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Abstract — Subtle inflections of pitch, often performed 
intuitively by musicians, create a harmonically sensitive 
expressive intonation. As each new pitch is added to a 
simultaneously sounding structure, very small variations in 
its tuning have a substantial impact on overall harmonic 
comprehensibility.  

In this project, James Tenney’s multidimensional lattice 
model of intervals (‘harmonic space’) and a related measure 
of relative consonance (‘harmonic distance’) are used to 
evaluate and optimize the clarity of sound combinations. A 
set of tuneable intervals, expressed as whole-number 
frequency ratios, forms the basis for real-time harmonic 
microtuning. An algorithm, which references this set, allows 
a computer music instrument to adjust the intonation of 
input frequencies based on previously sounded frequencies 
and several user-specified parameters (initial reference 
frequency, tolerance range, prime limit). 

Various applications of the algorithm are envisioned: to find 
relationships within components of a spectral analysis, to 
dynamically adjust computer instruments, to research the 
tuneability of complex microtonal pitch structures. Most 
generally, it furthers investigations into the processes 
underlying harmonic perception, and how these may lead to 
musical applications. 

I. INTRODUCTION 
In A History of ‘Consonance’ and Dissonance’ James 

Tenney identifies several distinct conceptions of these two 
terms in the theory and practice of Western music. In 
particular, he singles out contributions made by Hermann 
von Helmholtz in identifying a potential psychoacoustic 
basis for defining them: namely, as properties of sound 
that have to do with the beating speeds of partials and 
combination tones in a complex structure of pitches. 
Helmholtz posits a relationship between consonance and 
the elimination of slow beats caused by unisons of 
common partials. Conversely, he associates dissonance 
with maximal roughness (partials beating between 30 and 
40 Hz). Helmholtz’ theory suggests that consonance, as 
well as dissonance, can be most effectively maximized by 
tuning sounds in Just Intonation, that is, as integer ratios 
of frequencies, because such sounds have a repeating 
(periodic) structure. Periodicity emphasizes both the 
sensation of stability and smooth fusion in beatless 
consonances as well as the regularity of intermittent 
pulsations causing roughness in dissonance. 

Composers in the 20th century have established a basis 
for musically exploring Helmholtz’ premises about 
harmonic perception. Arnold Schoenberg, John Cage and 
Edgard Varèse, among numerous others, contributed to 
the emancipation of dissonance and noise (inharmonic 
sound complexes) as acceptable musical material. Harry 
Partch, Ben Johnston and La Monte Young extended the 

late 15th Century model of Just Intonation, which was a 
tuning system using small-number frequency ratio 
intervals derived from the prime numbers 2, 3, and 5, to 
include relationships produced by many higher prime 
numbers (7, 11, 13, 17, 19, 23, 29, 31, ...).  

Building on Leonhard Euler’s theory of mathematically 
evaluating relative consonance, Tenney proposes a general 
multidimensional lattice model called harmonic space, in 
which the harmonic distance (HD) between two pitches 
comprising a musical interval may be well defined. Each 
interval is represented in this space by the prime factor 
exponents of a frequency ratio b/a, expressed in lowest 
terms, and measured from an arbitrarily tuned origin (1/1). 
This ratio (b/a) may be exactly equal to the initial interval, 
or it may be a nearby approximation, taking into account 
detuning within a specified range of tolerance. Harmonic 
distance (HD) is defined by the following equation. 

 

! 

HD = log2(ab)  (1) 
 

One may also simply consider the lowest-terms product of 
numerator and denominator – the integer (ab) – which I 
call HD-product.  

Thus, the harmonic space representation of musical 
intervals may be constrained by tolerance, by the number 
of prime factors included in the model (dimensionality or 
prime limit), and finally by harmonic distance. 

 

II. MELODIC AND HARMONIC RELATIONSHIPS 
Aristoxenus, writing in the fourth century B.C., 

distinguishes the continuously gliding pitch changes 
characteristic of speech from the sustained, discrete tones 
used in singing. In particular, he notes that the more 
precisely such tones are maintained at correctly chosen 
pitch-heights, the more clarity melody acquires. 

In the simplest sense, melody is based on three possible 
relations between pitches: the same, higher and lower. 
The property of being the ‘same’ allows for a certain 
tolerance, in the sense that small variations of pitch are not 
perceived as melodically different. Perhaps some of the 
finest gradations may be heard in the srutis of South 
Indian melody.  In my own experience, intervals smaller 
than 1/6 of a tone (approximately 35¢) begin to take on 
the character of enharmonic shadings of pitch rather than 
functioning as distinct tones. Traditionally, theory has 
referred to such microtonal variations as commas and 
schismas. 

On the other hand, the relations ‘higher’ and ‘lower’ 
tend to be divided musically into two general types of 
melodic interval: those which fall within one critical 
bandwidth (roughly an 8/7 ratio of frequencies) are said to 
move by step, and are referred to as tones and fractions 
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thereof (e.g. semitone, quartertone, sixthtone); larger 
intervals are often described as leaps. 

Claudius Ptolemy describes the situation more precisely 
by identifying three classes of non-unison intervals: 
homophones, concords, and the melodic. Homophones are 
manifestations of the octave-equivalence phenomenon. 
Concords are those intervals ‘nearest’ to the homophones, 
that is, the ratios 3/2 (diapente) and 4/3 (diatessaron) and 
their octave-composites. Melodic intervals include the 
difference between the primary concords (the tone 9/8) 
and other ‘nearest’ epimoric ratios of the form 

 

! 

(n +1) : n  (2) 
 

Generalizing from this approach, we begin by 
examining the relations between simultaneously (rather 
than successively) sounded pitches. The advantage of such 
a method is that very slight variations of intonation, which 
might not disturb our perception of intervals when pitches 
are sounded one after the other, may be clearly 
distinguished when two tones are heard at the same time. 

One may proceed as follows: first, by defining an 
extended set of concords – intervals which may be 
accurately determined by perception alone; second, by 
considering the set of all possible melodic movements 
between these intervals. This would be a repertoire of 
melodic steps and leaps, a complete range of possible 
musical intervals, each of which could be accurately 
reproduced in reference to a virtual implied third pitch. 

Once again, perception suggests a rough division into 
three classes. In detuning one sound from unison with 
another, there is a region of pleasant beating, followed by 
a region of roughness. Throughout this entire range it is 
often difficult to hear two distinct pitches. Instead, there is 
a tendency to perceive a single average pitch and 
amplitude modulation as expressed by the well-known 
trigonometric identity 

 

! 

cosu + cosv = 2cos((u + v) /2)cos((u " v) /2)  (3) 
 
Once the distance between pitches reaches an 8/7 

interval or more, the sensation of mutually generated 
roughness tends to be replaced by a smoother coexistence 
of the two separate pitches, and it becomes considerably 
easier to distinguish the sonorous properties of intervals. 
These variations of sound quality, which do not primarily 
have to do with the melodic notions ‘higher’ and ‘lower,’ 
may be called harmonic relationships. The phenomenon 
of octave equivalence, which allows men and women (or 
boys) singing at different octaves to believe that they are 
producing ‘the same’ pitch, is one clear example. 

Harmonic relationships between two sounds are largely 
determined by beating and unison relationships between 
partials, as well as characteristic patterns produced 
between relative beating rates on different critical band 
regions, which are associated (in well-tuned sounds) with 
a sensation of spectral fusion. The phenomena described 
above in reference to the detuning of a unison are now 
replicated between various spectral components. Partials 
lock into periodic patterns, creating auditory phenomena 
similar to the visual patterns made by a stroboscope. 

This process may be effectively investigated by 
constructing just intervals using additive synthesis, 
eliminating common partials, and hearing at what point 

the distinctive qualities defining specific intervals begin to 
disappear.  To a lesser degree, harmonic relationships may 
also be deduced from the periodicity of a composite 
waveform. However, listening for beating in a non-unison 
interval produced between two pure sinewaves and 
attempting to tune it exactly is considerably more difficult 
than the same task with two spectrally rich tones. 

Thus, in the case of simultaneously sounded pitches, 
discrete steps may most readily be found by harmonically 
examining the larger intervals, which melodically would 
be considered to be leaps. Those intervals that may be 
precisely and repeatedly produced by perception alone I 
refer to as tuneable intervals. 
   

III. TUNEABLE INTERVALS 
The notion of a range of tolerance within which an 

interval may be considered to be de-tuned or mis-tuned 
clearly implies that infinitely many other rational 
relationships situated in the range are not heard as distinct 
intervals at all. Slight detuning, producing slow Leslie-
speaker phasing or beating in the form of vibrato, is often 
a very beautiful musical inflection of an interval that in no 
way damages its comprehensibility. A highly developed 
culture of such inflections applied within a very precisely 
tuned context is evident, for example, in the gamakas of 
South Indian classical music. Alternately, harmonically 
conceived keyboard music by J.S. Bach or Frederic 
Chopin, for example, is based on the ranges of tolerance 
inherent in the theoretically “out of tune” systems of well-
temperaments or equal temperament. 

At the same time, there are often several variations of 
fine-tuning possible within a given tempered interval-
class, each of which may be well determined by listening 
for and eliminating beats. One common example is the 
tritone 10/7 (617.5¢) and the diminished fifth 7/5 
(582.5¢), which differ by a melodic sixth-tone 50/49 
(35¢). The tempered interval 600¢ found on MIDI 
keyboards lies in-between the two just ratios. 

In addition to such variations of the well-known 
intervals, there are also many intervals which lie outside 
the range of tolerance of the 12 tempered pitch-classes but 
which may nevertheless be precisely heard. Most familiar 
in the context of Arabic music: the ‘neutral’ third of 
Zalzal (27/22 or 354.5¢). 

In general, there are more intervals that can be tuned by 
ear than the tempered system distinguishes, but this 
collection of intervals is also somehow bounded. This 
suggests that a provisional set of tuneable intervals may 
be found. Some criteria suggest themselves for the scope 
of such an investigation:  

(1.) Timbre: Each interval may be tested with both 
electronic additive synthesis timbres, and with acoustic 
instrumental sounds. When testing with electronic sounds 
it is useful to eliminate the clearly audible beating 
between common partials. In acoustic instrument sounds, 
the continuous variation of amplitude in spectral 
components reduces the effectiveness of this kind of 
beating as a primary tuning cue. 

(2.) Range for each interval: It is useful to 
determine the range within which each interval may be 
tuned. It is possible that a quantitative relationship might 
be deduced between the individual ranges of tuneability 
and the register of primary difference tones and especially 
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of the periodicity pitch (a virtual fundamental common to 
both pitches). 

(3.) Harmonic Distance: Since intervals become 
increasingly difficult to hear as their ratio-numbers 
increase, it might be assumed that above a certain HD 
intervals are no longer directly tuneable, and would 
instead have to be constructed from simpler intervals. 

(4.) Octave Equivalence: Some intervals may quite 
readily be tuned in a wide voicing (larger than an octave) 
whilst remaining difficult or impossible to tune in closed 
position. Once a set of tuneable intervals has been 
established, the effect of octave equivalence within this 
gamut may be investigated, particularly in relation to the 
possible formations of musical scales and modes. 

(5.) Range of Tuneability: Due to critical band 
phenomena, small intervals are eventually perceived more 
readily as an amplitude-modulated average value than as 
two distinct pitches, as discussed above. Thus, there is a 
smallest non-unison tuneable interval. Similarly, as the 
intervals become larger, after a certain point the ability to 
perceive and differentiate harmonic phenomena becomes 
negligible. It is possible that the formula for harmonic 
distance must be appropriately modified or bounded to 
take these extreme conditions into better account. 

(6.) Distribution of Intervals: In some cases, several 
similarly complex intervals happen to fall very close to 
each other, causing their harmonic qualities to be less 
readily distinguished (e.g. 13/9 and 16/11 are separated by 
144/143, or about 12¢). Therefore, the relationship 
between tuneability and the distribution of ratios also 
merits further examination. 

An ongoing empirical investigation (using acoustic and 
electronic sounds in various registers) has to date 
identified 122 23-limit tuneable intervals in the range 1/1 
(0¢) to 28/1 (5769¢). The complete list of all distinct 
lowest-terms ratios between the first 28 partials, together 
with information about prime limit, melodic distance, 
harmonic distance, and an empiric evaluation of 
tuneability on a four-level scale (impossible, very 
difficult, average, easy; numerically represented as 0–3) 
may be found as an Appendix below. 

These harmonic relationships have been used to 
construct the provisional form of the tuning algorithm 
described in this paper.  

 

IV. TUNEABLE MELODIC STEPS 
When the 122 tuneable intervals are used to define a set 

of pitches both above and below a given starting note, and 
the doubled occurrence of the unison 1/1 is eliminated, 
243 distinct pitches remain. By generating a 2-
dimensional 243x243 array, all of the intervals spanning 
these pitches may be determined. Once duplicates have 
been filtered, this produces a list of 3997 unique tuneable 
melodic intervals ranging from a unison (1/1 or 0¢) to just 
under 10 octaves (784/1 or 11537.7¢). Each of these 
melodic intervals implies a virtual third pitch, which (if 
sustained while successively sounding the tones forming 
the melodic interval) will form tuneable intervals to both 
initial pitches.  

The fine-tuning algorithm described below uses this 
array of intervals to generate a lookup table, based on the 
premise that tuneable intervals “one-step-removed” may 
effectively model how our brains attempt to deduce 
possible harmonic connections between pitches. 

 
A few statistical observations about this list are 

tabulated to indicate how finely it resolves the glissando-
continuum: 

TABLE I. 
TUNEABLE MELODIC INTERVALS BY OCTAVE 

Octave # of 
Intervals 

Mean 
Step 

Smallest 
Step 

Largest 
Step 

all 3997 2.89¢ 0.07¢ 62.96¢ 

1 785 1.52¢ 0.07¢ 8.34¢ 

2 720 1.67¢ 0.07¢ 8.34¢ 

3 667 1.80¢ 0.07¢ 8.34¢ 

4 600 2.00¢ 0.07¢ 8.34¢ 

5 431 2.78¢ 0.14¢ 11.35¢ 

6 310 3.87¢ 0.36¢ 13.65¢ 

7 225 5.29¢ 0.40¢ 23.34¢ 

8 133 9.09¢ 0.79¢ 28.27¢ 

9+ 126 15.38¢ 2.38¢ 62.96¢ 

 
 
In the course of developing the algorithm for 

continuous retuning of incoming data, the initial premise 
of tuning intervals between incoming frequencies has 
become revised. The tuneable melodic interval table is 
used to generate an extremely fine-grained set of available 
pitch-classes (within two tuneable steps and an arbitrary 
octave transposition of the 5 open strings of the orchestra, 
C-G-D-A-E). This set is still under development (as of 
April 2009), currently consisting of 3308 possible ratios 
within each octave, which may be filtered by tolerance 
and prime limit (maximum generating prime). The 
reduced list is then used to measure possible intervals 
between incoming frequencies and a best fit is determined. 

Eventually, based on the particular experiences, wishes 
and intervallic discrimination of a given listener, it will be 
possible to filter the array further, by specifying a limiting 
HD and individual prime-numbers for the harmonic space 
dimensions generating the ratios, allowing the particular 
qualities of different possible tuning schemes to be 
explored in musical applications of the algorithm. 
 

V. TRIADS 
So far, the discussion has been limited to the case of 

intonation in dyads. Clearly the situation increases in 
complexity with each additional note comprising an 
aggregate of pitches. At the same time, the most important 
qualitative (musical) differences are represented in the 
three simplest cases: melodic intervals (two successive 
pitches); harmonic intervals (two simultaneous pitches); 
chords (three or more simultaneous pitches). 

At this point, I limit my discussion of chords to the case 
of triads. In the future development of the algorithm 
proposed here, I anticipate that it will be possible to 
generalize to structures involving more pitches. 
Eventually, such study might also be connected to the 
more statistical properties of large microtonal aggregates 
explored by Iannis Xenakis and by some of the spectralist 
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composers (Gérard Grisey, Tristan Murail, Oliver 
Schneller). It will also require work to understand how 
larger aggregates form modal sets, which become clearly 
defined in memory even when not all pitches are 
sounding.  

In analyzing the problem of fine-tuning an arbitrarily 
formed microtonal triad, it is useful to consider that there 
are not only three different pitches, but also three intervals 
formed between pairs of pitches. Taking the three pitches 
in ascending order (expressed as frequencies) 

 

! 

F1< F2 < F3 (4) 
 
the three intervals may be summarized mathematically as 

 

! 

(F3/F1) = (F3/F2)(F2 /F1)  (5) 
 
Looking at the triad expressed in this way, and comparing 
the three dyads to the previously discussed set of tuneable 
intervals, four possibilities emerge. In any triad, either 
none, one, two, or all three of the component dyads form 
tuneable intervals. In the ‘two’ case one might note two 
sub-classes, depending on whether the outer interval is 
tuneable or not. 

Since the composite sound of a triad is, in some way, a 
superimposition of three interference patterns between 
pitch-pairs, it seems intuitively correct to postulate that 
triads made up from two or three tuneable dyads will 
generally sound more stable and comprehensible than 
those with none or only one. Thus, assuming that the 
purpose of fine-tuning is to maximize clarity and variety 
within a large range of possible sound structures, any 
algorithm that favors the possibility of two or more 
tuneable interval relationships will produce results with a 
pronounced acoustical advantage. 

Each triad made up from the same dyads has two 
possible symmetric forms, which (following Partch) I 
distinguish as otonal or utonal. 

In the case of dyads, this may be imagined as the 
difference between taking an interval upward or 
downward from a given starting pitch. The resulting sound 
structure is related by a transposition of register, but 
otherwise exactly identical. 

In the case of three pitches, written as above, the two 
smaller intervals F2/F1 and F3/F2, taken together, “add 
up” to form the outer interval F3/F1. It is possible to 
reverse the order of these two smaller intervals by 
defining a new pitch 

 

! 

F2* = (F3/F2) " F1 (6) 
 

(So F2*/F1 = F3/F2 and F3/F2* = F2/F1.) 
If the two chord structures F1:F2:F3 and F1:F2*:F3 are 

expressed in lowest terms, either they will both turn out to 
be identical (if F2* = F2, i.e. F3/F2 = F2/F1) or one of 
these two forms may be found to consist of “smaller” 
numbers. In this case, define “smaller” in the following 
sense: if the outer terms of both forms are the same, take 
the triad with a smaller middle term; if not, take the one 
with a smaller first term. This I would then call the otonal 
form. 

To briefly explain this idea, take as an example the 
relationship between a major and minor triad. Both are 
composed of a major third (5/4) and a minor third (6/5) 
adding up to a perfect fifth (3/2). As chords, they may be 
represented by the frequency ratios 4:5:6 (major) and 
10:12:15 (minor). The numbers indicate that the minor 
triad occurs later in a harmonic (overtone) series than the 
major triad, which is therefore acoustically simpler (easier 
for the ear to analyze) and which, according to the 
definition above, is otonal. 

Consider the property that any tuned aggregate of 
pitches shares not only a common fundamental frequency 
but also a least common partial. It is thus also possible to 
express chord proportions in relation to their common 
partial. Still thinking of overtone series, in the case of both 
4:5:6 and 10:12:15 the least common partial will be 60 
(the least common multiple in both cases). Thus, in 
relation to this common partial (which, in a well-tuned 
triad, may be acoustically perceived as part of the 
composite sound) the minor triad may be expressed as 
1/6:1/5:1/4 and the major as 1/15:1/12:1/10. 

So, considered downward (utonally), the minor triad 
takes smaller numbers. Namely, when building a 
subharmonic (undertone) series downward from the 
common partial, the minor triad will occur sooner than the 
major, and so I refer to it as utonal.  

The symmetry inherent in this argument has been 
compelling to many music theorists, including Rameau, 
Riemann and Partch, particularly as a way of “explaining” 
the minor triad (in spite of its dissonant difference tones) 
and also as a way of generalizing major-minor tonality. 
However, the perception of chord “stability” (which 
tonality requires) is based on a psychoacoustic sensation 
of fusion produced by harmonic spectra. Utonal sounds 
are thus by definition less stable than otonal sounds 
(because they are further away from their fundamental 
periodicity pitch). As utonal structures become 
increasingly complex, their conceptual symmetry to otonal 
counterparts is no longer acoustically perceptible.  

Nevertheless, it is certainly possible and musically 
fruitful to investigate a list of simpler triads in which this 
quality is maintained. One interesting such example is the 
septimal triad 6:7:8 and its utonal counterpart 21:24:28.  

 

VI. DEVELOPMENT OF THE ALGORITHM 
The problem might be summarized as follows: given 

two frequencies extracted from a spectral aggregate (e.g. a 
woodwind multiphonic timbre), what might be an 
effective method for extrapolating to harmonically 
interesting third pitches?  

First, there is the problem of deducing potentially 
perceptible harmonic relationships (ratios) between the 
two extracted pitches. Then, once one of these ratios has 
been selected, the choice of a third pitch is evaluated 
based on the intervals it forms with both initial pitches, as 
well as by the overall sonorous qualities of the triad all 
three generate.  

Imagine the three pitches forming a triangle. By slightly 
adjusting each vertex it is possible to find a proportionally 
ideal structure. The first vertex need only be adjusted if 
there is an external tuning standard in place (for example, 
A-440). The second vertex is adjusted to the first, 
producing a tuneable melodic step, which may or may not 
itself be a tuneable interval. Then any number of tuned 
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possibilities exist for the third vertex, at least some of 
which produce two tuneable intervals to both initial 
pitches. 

This model led to the current harmonic microtuning 
algorithm, which exists in the form of an external object, 
programmed in C, and compiled to run in the MaxMSP 
environment. This external has been implemented within a 
Max patch, which allows for the fine-tuning of up to three 
pitches, in relation to each other and to a reference 
frequency, and according to three additional user-specified 
parameters: tolerance, pitch-class scaling, and prime limit. 

The first version of this program uses a list of 3997 
tuneable melodic intervals as a lookup-table, searching to 
find the nearest possible match within a desired prime 
limit. If this nearest result falls outside of a user-specified 
tolerance range, then it is immediately output. Otherwise 
the program searches for the simplest result within the 
desired range, evaluated by minimizing a harmonic-
distance sum.  

This sum is weighted by the choice of a pitch-class 
scaling value, which serves to either favor the simplicity 
of the sounding interval (value 0), the spelling of the 
microtonal pitch within a notated system (value -1), or the 
pitch-class relationship to its reference pitch (value 1). 
Intermediate values produce a linear interpolation between 
the evaluated harmonic distances. Pitch-class HDs are 
computed by ignoring the octave prime dimension 2 
(factoring out all the 2’s in the ratios). The resulting 
harmonic space is called projection space. 

Input to the external is distributed between ten available 
‘inlets.’ Following the right-to-left logic of Max, inlet 10 
accepts integers and determines a prime limit ranging 
from Pythagorean intonation (intervals generated by the 
numbers 2 and 3 and their powers) to the limits of 
tuneability (intervals made from the primes 3, 5, 7, 11, 13, 
17, 19, 23). In future implementations, it would be 
interesting to have an on-off choice for each prime, 
allowing, for example, a set of intervals generated by the 
primes 3 and 7 only. 

Inlet 9 accepts pitch-class scaling, in the form of a float 
value between -1 and 1. If 0 is entered, the algorithm 
evaluates intervals as they sound, without considering 
pitch-class. Thus, if a G, a minor seventh above A, is input 
as the first frequency to be tuned, and the tolerance range 
and prime limit allow it, the algorithm will prefer 9/5 
(raising the G by a comma) to 16/9 (Pythagorean G). 
However, if the same pitch class is entered two octaves 
lower, as a G that is a major ninth below A, then the 
algorithm would prefer 4/9 (Pythagorean G). In both 
cases, the simplest sonority is chosen.  

Sometimes, however, it might be preferable for the 
algorithm to choose in the manner of traditional modes 
and scales, repeating identically in each octave. (In this 
case it should retune consistently whenever it receives a 
G.) The decision may be weighted in favor of pitch class 
relationships to the reference frequency (values between 0 
and 1), or in favor of the microtonal spellings using the 
Extended Helmholtz-Ellis JI Pitch Notation (values 
between 0 and -1). This second choice might produce 
slightly more complex intervals but has the advantage of 
keeping the notated pitches simpler, useful when dealing 
with a written score or whilst algorithmically generating 
pitches to be written down and played by other 
instruments. 

Inlet 7 is the reference frequency (F0), expressed as a 
float value in Hz. I generally leave this at the standard 
tuning reference (440 Hz), but it is possible to use any 
frequency (for example, any tempered pitch in any 
octave). 

The first six (of ten total) inlets are taken up (pairwise) 
with the three frequencies (F3, F2, F1), which may each 
be input in one of three possible numerical 
representations. In the following description, the terms 
‘inlet 1’ and ‘inlet 2’ are used an as example: inlets 3&4 
and 5&6 may be imagined as behaving identically. 

If an exact just intonation ratio to F0 is desired, 
namely a pitch, which is already tuned and ought to be left 
alone, then inlet 1 and inlet 2 must both receive nonzero 
positive integers. If an absolute frequency value is to be 
interpreted, inlet 2 should receive a 0 and inlet 1 a positive 
float value.  

If the input desired is MIDI+cents (which offers a 
greater degree of precision) then inlet 1 must receive a 
negative value, which may be calculated from the desired 
MIDI note. (The MIDI value of the note is multiplied by -
1 and added to -1000, an arbitrary offset value, which 
must also be adjusted by the distance of the tempered 
reference frequency from A4 MIDI value 69.) In this case 
inlet 2 accepts positive or negative float values for 
deviation from the MIDI value in cents. 

Each incoming frequency is tuned in relation to a 
reference: F1 is tuned to F0, F2 is tuned to F1, and F3 is 
tuned to either F2 or F1, whichever possibility offers the 
best overall result. The ability to input a ratio allows the 
user to specify complex just intonation intervals, which 
will not be retuned, as components of the structure. 

 

VII. CURRENT IMPLEMENTATION (MICROMÆLODEON I)   
The current algorithm is limited to making decisions 

about the fine-tuning of one, two or three pitches, received 
successively, sounding simultaneously. It has been 
implemented as the core of a virtual instrument called 
Micromælodeon I. Up to three sounds may be generated 
and selectively fine-tuned, using a simple wave-shape-
morphing synthesis method combined with a filtergraph 
used to simulate resonances and formants. 

In its second revision (April 2009), the algorithm was 
altered to search for pitches from a fixed set of classes, 
determined by means of tuneable melodic steps, and to 
find the best intervals between tuned pitches by evaluating 
harmonic distance. The results are perceptually consistent 
with the behavior of the first implementation, but the new 
version avoids the problem of recursive interval ratios 
causing the tonal center of harmonic space to continually 
drift (eventually crashing the computer calculations). 

It is possible that the three-pitch ‘triangulation’ process 
described in this paper may be effectively generalized to 
tune structures of up to twelve pitches related in a network 
as follows: 

(1.)  F0, F1, F2, F3 function as described above. 
(2.) F4 is tuned to F0, F1, and F3. 
(3.) F5 is tuned to F0, F2, and F3. 
(4.) F4 and F5, combined respectively with each of 

F1, F2, F3 (with reference F0) produce the next six 
pitches – F6 through F11. 

(5.) F4 and F5 (with reference F0) produce F12. 
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An instrument to investigate this extended model is 
currently being programmed, allowing empirical testing of 
the algorithm’s performance, integration with hardware 
control interfaces and eventually the implementation of a 
learning memory which would facilitate developing 
harmonic decision-making over larger musical time-scales 
(phrase, section, entire piece). 

I anticipate that developing this ‘memory’ will continue 
my previous work with ‘crystal growth’ algorithms in 
harmonic space, which enable stochastic generation of 
harmonically compact pitch-clusters. 

The 2009 version consists of a Haken Audio 
Continuum Fingerboard connected to a retuning engine 
and a synthesis module programmed in MaxMSP with the 
ongoing collaboration of Rama Gottfried, and has been 
made possible by the generous support of the Universität 
der Künste Berlin during the Pilotphase of the UdK’s 
Graduiertenschule für die Künste und die Wissenschaften. 

 

VIII. CONCLUSION   
In informal testing, given appropriately chosen 

reference pitches and parameters, the Micromælodeon is 
readily able to find classical sets of pitches: among others, 
the major and minor scales tuned in Just Intonation 
(Ptolemaic tense [syntonon] diatonic); the 7-limit srutis 
used in Indian music. At the same time, it suggests subtle 
fine-tunings of more ‘dissonant’ equal-tempered chords, 
based on relationships of higher partials, revealing 
complex tonal relationships underlying ‘atonal’ sounds. 

It is hoped that the algorithm presented here will 
provide a foundation for new electronic instruments, 
which allow for precise musical investigations of the 
phenomena of harmonic perception, by implementing 
well-formed descriptive (rather than pro- or pre-scriptive) 
principles of those relations between pitches which do not 
have to do exclusively with “higher” and “lower” (i.e. 
harmony). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

APPENDIX: TABLE OF TUNEABLE INTERVALS 
The intervals below are taken from the first 28 partials, 

ordered by rising HD-product (numerator multiplied by 
denominator). The complete list of unique lowest terms 
ratios was truncated at the point after which no more 
tuneable intervals were found. Boldface font indicates 
extensions of the original three-octave tuneable set. Italic 
font indicates intervals that were not found to be tuneable. 
The informal ‘degree’ column shows, on a scale from 0 to 
3, my own assessment of how difficult the tuning task was 
using acoustic stringed instruments (violin, viola, 
violoncello, contrabass). 

 
 
 
 

TABLE II. 
TUNEABILITY OF INTERVALS SORTED BY HD-PRODUCT 

Ratio 
(num) 

Ratio 
(den) 

Degree  
(0–3) 

HD-
product 

Prime 
Limit Size (cents) 

1 1 3 1 1 0 
2 1 3 2 2 1200 
3 1 3 3 3 1901.955001 
4 1 3 4 2 2400 
5 1 3 5 5 2786.313714 
3 2 3 6 3 701.9550009 
6 1 3 6 3 3101.955001 
7 1 3 7 7 3368.825906 
8 1 3 8 2 3600 
9 1 3 9 3 3803.910002 
5 2 3 10 5 1586.313714 

10 1 3 10 5 3986.313714 
11 1 3 11 11 4151.317942 

4 3 3 12 3 498.0449991 
12 1 3 12 3 4301.955001 
13 1 3 13 13 4440.527662 

7 2 3 14 7 2168.825906 
14 1 2 14 7 4568.825906 

5 3 3 15 5 884.358713 
15 1 2 15 5 4688.268715 
16 1 2 16 2 4800 
17 1 1 17 17 4904.95541 

9 2 3 18 3 2603.910002 
18 1 1 18 3 5003.910002 
19 1 1 19 19 5097.513016 

5 4 3 20 5 386.3137139 
20 1 1 20 5 5186.313714 

7 3 3 21 7 1466.870906 
21 1 1 21 7 5270.780907 
11 2 3 22 11 2951.317942 
22 1 1 22 11 5351.317942 
23 1 1 23 23 5428.274347 

8 3 3 24 3 1698.044999 
24 1 1 24 3 5501.955001 
25 1 1 25 5 5572.627428 
13 2 3 26 13 3240.527662 
26 1 1 26 13 5640.527662 
27 1 1 27 3 5705.865003 

7 4 3 28 7 968.8259065 
28 1 1 28 7 5768.825906 

6 5 3 30 5 315.641287 
10 3 3 30 5 2084.358713 
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15 2 3 30 5 3488.268715 
11 3 3 33 11 2249.362941 
17 2 2 34 17 3704.95541 

7 5 3 35 7 582.5121926 
9 4 3 36 3 1403.910002 

19 2 2 38 19 3897.513016 
13 3 3 39 13 2538.572661 

8 5 3 40 5 813.6862861 
7 6 3 42 7 266.8709056 

14 3 3 42 7 2666.870906 
21 2 2 42 7 4070.780907 
11 4 3 44 11 1751.317942 

9 5 3 45 5 1017.596288 
23 2 2 46 23 4228.274347 
16 3 3 48 3 2898.044999 
25 2 2 50 5 4372.627428 
17 3 3 51 17 3003.000409 
13 4 3 52 13 2040.527662 
27 2 1 54 3 4505.865003 
11 5 2 55 11 1365.004228 

8 7 2 56 7 231.1740935 
19 3 3 57 19 3195.558015 
12 5 3 60 5 1515.641287 
15 4 3 60 5 2288.268715 
20 3 3 60 5 3284.358713 

9 7 3 63 7 435.0840953 
13 5 2 65 13 1654.213948 
11 6 2 66 11 1049.362941 
22 3 3 66 11 3449.362941 
17 4 2 68 17 2504.95541 
23 3 3 69 23 3526.319346 
10 7 2 70 7 617.4878074 
14 5 3 70 7 1782.512193 

9 8 1 72 3 203.9100017 
25 3 1 75 5 3670.672427 
19 4 2 76 19 2697.513016 
11 7 2 77 11 782.4920359 
13 6 2 78 13 1338.572661 
26 3 2 78 13 3738.572661 
16 5 3 80 5 2013.686286 
12 7 2 84 7 933.1290944 
21 4 2 84 7 2870.780907 
28 3 1 84 7 3866.870906 
17 5 2 85 17 2118.641696 
11 8 1 88 11 551.3179424 
10 9 0 90 5 182.4037121 
18 5 3 90 5 2217.596288 
13 7 2 91 13 1071.701755 
23 4 2 92 23 3028.274347 
19 5 2 95 19 2311.199302 
11 9 1 99 11 347.4079406 
25 4 2 100 5 3172.627428 
17 6 2 102 17 1803.000409 
13 8 2 104 13 840.5276618 
15 7 0 105 7 1319.442808 
21 5 1 105 7 2484.467193 
27 4 1 108 3 3305.865003 
11 10 0 110 11 165.0042285 
22 5 1 110 11 2565.004228 
16 7 0 112 7 1431.174094 
19 6 1 114 19 1995.558015 
23 5 2 115 23 2641.960633 
13 9 1 117 13 636.61766 
17 7 1 119 17 1536.129503 
15 8 1 120 5 1088.268715 
24 5 2 120 5 2715.641287 
14 9 1 126 7 764.9159047 
18 7 2 126 7 1635.084095 

13 10 2 130 13 454.2139479 
26 5 1 130 13 2854.213948 
12 11 0 132 11 150.6370585 
19 7 0 133 19 1728.68711 
27 5 0 135 5 2919.551289 
17 8 0 136 17 1304.95541 
23 6 1 138 23 2326.319346 
20 7 2 140 7 1817.487807 
28 5 2 140 7 2982.512193 
13 11 0 143 13 289.2097194 
16 9 0 144 3 996.0899983 
25 6 1 150 5 2470.672427 
19 8 1 152 19 1497.513016 
17 9 0 153 17 1101.045408 
14 11 0 154 11 417.5079641 
22 7 1 154 11 1982.492036 
13 12 0 156 13 138.5726609 
23 7 0 161 23 2059.448441 
15 11 0 165 11 536.9507724 
21 8 0 168 7 1670.780907 
24 7 1 168 7 2133.129094 
17 10 0 170 17 918.6416956 
19 9 0 171 19 1293.603014 
25 7 0 175 7 2203.801521 
16 11 1 176 11 648.6820576 
20 9 0 180 5 1382.403712 
14 13 0 182 13 128.2982447 
26 7 0 182 13 2271.701755 
23 8 2 184 23 1828.274347 
17 11 0 187 17 753.6374671 
27 7 1 189 7 2337.039096 
19 10 0 190 19 1111.199302 
15 13 0 195 13 247.741053 
18 11 0 198 11 852.5920594 
22 9 0 198 11 1547.407941 
25 8 1 200 5 1972.627428 
17 12 0 204 17 603.0004086 
23 9 0 207 23 1624.364346 
16 13 0 208 13 359.4723382 
19 11 0 209 19 946.1950738 
15 14 0 210 7 119.4428083 
21 10 0 210 7 1284.467193 
27 8 1 216 3 2105.865003 
20 11 0 220 11 1034.995772 
17 13 0 221 17 464.4277477 
25 9 0 225 5 1768.717426 
19 12 0 228 19 795.5580153 
23 10 0 230 23 1441.960633 
21 11 0 231 11 1119.462965 
18 13 0 234 13 563.38234 
26 9 0 234 13 1836.61766 
17 14 0 238 17 336.129503 
16 15 0 240 5 111.7312853 
19 13 0 247 19 656.9853544 
28 9 1 252 7 1964.915905 
23 11 0 253 23 1276.956405 
17 15 0 255 17 216.6866948 
20 13 0 260 13 745.7860521 
24 11 0 264 11 1350.637059 
19 14 0 266 19 528.6871097 
27 10 0 270 5 1719.551289 
17 16 0 272 17 104.9554095 
21 13 0 273 13 830.2532456 
25 11 0 275 11 1421.309485 
23 12 1 276 23 1126.319346 
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