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1. Tuning as a perceptual practice

Just intonation describes a particular practice of playing “in tune” – namely,

of tuning musical intervals as small number frequency ratios1 to evoke a

distinctive periodic resonance. This harmonic fusion is perceived most clearly

when hearing an aggregate of frequencies tuned according to an harmonic

series. Such a sound more nearly represents the spectrum of a single tone.2

Harmonic fusion is often perceived in naturally occurring acoustic structures

composed of harmonic partials,3 i.e. frequencies, which are whole number

multiples of a single fundamental frequency.4 Such sounds have a salient

pitch and a periodic waveform. The characteristic untempered intervals and

aggregates of harmonic series suggest ways of perceiving and exploring this

fusion sound within musical contexts. These intervals include infinitely many

that are microtonal.5

When two pitches play simultaneously, a listener perceives an interval

– i.e. a specific quality of sound. Each pitch’s timbre is an harmonic series

and its perceived pitch-height is the series’ fundamental. The pitches interact

to produce combination tones.6 As the interval between two fundamental

frequencies approaches a simple ratio, some of their respective partials come

into alignment. This highlights unisons between partials by slowing down

or eliminating the sensation of beating7 and, thereby, focusses the interval’s

characteristic sonority. At the same time, the composite waveform of the

two pitches becomes periodic, and produces a virtual fundamental called the

periodicity pitch. Such special relationships seem, therefore, to be “tuned”

and possess a recognisable periodic signature. This perceived quality may be

correlated to the unique pattern of frequency differences between the combined

partials of both pitches, which repeats at multiples of the interval’s least

common partial.8

1. Frequencies are perceived proportionally, i.e. a constant ratio of two frequencies is heard

as a constant musical interval.

2. See Section 7 for further discussion.

3. Partials are individual frequency components of a single sound. Inharmonic partials do

not necessarily follow the harmonic series (e.g. the vibration of a drumhead or cymbal).

4. The harmonic partials of a fundamental frequency f are equal to f, 2f, 3f, 4f, etc.

5. This term is generally applied to any interval smaller than a wholetone, which is not one

of the familiar semitones.

6. Combination tones (summation tones and difference or Tartini tones) are frequencies

caused by nonlinear interference between simultaneous vibrations in a medium. The combination

tones of two frequencies f1 and f2 take the form |(a×f1)+(b×f2)|, where a and b are positive
or negative integers.

7. As the frequency difference between two pitches approaches zero, pulsating changes of

loudness called acoustic beats are perceived.

8. The least common partial is the lowest frequency that is an harmonic partial of both
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Harmonic fusion and periodic signatures are produced by intervals that

are part of an harmonic series and may, therefore, be represented by a ratio

of whole numbers. For example, the interval of the octave-reduced natural

seventh, e.g. 220 Hz to 385 Hz, is clearly discernible. The upper frequency

relates to the lower in the same way that the seventh harmonic relates to the

fourth harmonic – i.e. by the fraction 7
4 .

220 Hz× 7

4
= 385 Hz

Similarly, to determine the harmonic relationship between two known

frequencies (in this case 220 Hz and 385 Hz), they may be divided by their

greatest common divisor or GCD (here 55), thereby reducing the ratio to

lowest terms. This simplified ratio serves as the interval’s most accurate

identification and, at the same time, defines one pitch in terms of another.

385 Hz÷ 55

220 Hz÷ 55
=

7

4

2. The language of ratios

Composer Harry Partch (1901–1974) developed a method of working with

pitches expressed as ratios,9 measuring intervals from a single reference,

written in the form 1
1 . The reference Partch chose for his scale was G3 392

Hz, although any frequency may be used as a reference. Since the pitch A4

is commonly used as a tuning reference for orchestral and chamber playing,

it is perhaps the most convenient standard 1
1 for instrumental just intonation

composition. In the following examples, the fractions may be thought of as

pitches in this sense.

To combine two pitches, their ratios are multiplied.

b

a
× d

c

To reduce the product to lowest terms, the numerator and denominator are

each divided by the their greatest common divisor (GCD).

To find the interval between two pitches, the larger ratio is divided by the

smaller and the result reduced.

b

a
÷ d

c

pitches.

9. In his book Genesis of a Music, Partch calls this system Monophony or the language of

ratios.
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To divide two fractions, the first is multiplied by the reciprocal of the second.

b

a
÷ d

c
≡ b

a
× c

d

To transpose a pitch up (or down) by one octave, its frequency is doubled

(or halved). To transpose a pitch upward by any number of octaves y, its

frequency is multiplied by 2y. To transpose downward, its frequency is divided

by 2y. As above, this is equivalent to multiplying by the reciprocal 1
2y or 2

−y.

As an example, to transpose the lowest A of the piano to the highest,10 its

frequency is multiplied by seven octaves (27).

27.5 Hz× 27 ≡ 27.5 Hz× 128 = 3520 Hz

Intervals may be conceived of in two ways depending on which of the two

pitches is taken as reference. If the lower pitch is the reference, the interval

is written as a fraction greater than 1, e.g. 3
2 (A4 in relation to D4). If the

higher pitch is the reference, the interval is written as a fraction between 0

and 1, e.g. 2
3 (D4 in relation to A4). Note that frequency ratios are always

ratios of positive numbers.

Pitches as well as intervals may be expressed in the form of fractions b
a .

When pitches are sounded successively, their interval may be called melodic.

Melodic intervals and aggregates of three or more pitches (chords, melodies)

are sometimes more conveniently expressed as a proportion.

a : b : c : ...

If an harmonic series is a fundamental frequency multiplied by whole

numbers {1,2,3,...,n}, a subharmonic series is a common partial frequency

divided by {1,2,3,...,n}. This is equivalent to multiplying by the reciprocals of

the whole numbers {11 ,
1
2 ,

1
3 ,...,

1
n}. The result is an inverted harmonic series,

which has the same sequence of intervals projected successively downward.

The subharmonic series’ application to music is often criticised because it is

not a “naturally occurring” psychoacoustic structure – i.e., it is not a perceived

phenomenon of harmonic auditory cognition like fusion, periodic signature,

or timbre. It is, nevertheless, a useful musical model, as compositions of Ben

Johnston (b. 1926) exemplify.11

10. This calculation ignores the common practice of tuning octaves on pianos slightly wider

than the ratio 1:2 (stretch tuning). This accomodates the slight inharmonicity of the instrument’s

metal strings, which are actually too short and thick for the frequencies needed.

11. In particular, Johnston’s string quartets, e.g. Nos. 5, 6, and 7, work with serial trans-

formations (prime, retrograde, inversion, retrograde inversion). These are applied to melodic

material tuned in just intonation, harmonised by harmonic or subharmonic series pitch-class
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The various nodes of a single natural harmonic played upon an open string

follow the subharmonic series downward. For example, the 7th partial may

be played at nodes located at 1
7 ,

2
7 ,

3
7 ,

4
7 ,

5
7 , and

6
7 of the string length; these

pitches, when stopped, produce a subharmonic series below the 7th partial. As

well, the valves of brass instruments, when tuned proportionally to the main

tube length and to each other, generate a subharmonic series of fundamentals

above which the players can produce harmonic series.

Partch generally wrote pitches in “normalised” form – i.e. reduced to

the octave between 1
1 and

2
1 . Intervals greater than the octave are divided by

the appropriate power of 2 and reduced to lowest terms. For example, the

perfect eleventh 8
3 exceeds the octave

2
1 by a perfect fourth

4
3 . The following

demonstrates this normalisation procedure.

8

3
÷ 2 ≡ 8

3
× 1

2

8

3
× 1

2
=

8

6

GCD(8, 6) = 2

8÷ 2

6÷ 2
=

4

3

1 ≤ 4

3
≤ 2

Partch defined harmonic series pitch aggregates (11 ,
2
1 ,

3
1 ,...) as otonal struc-

tures. Following the idea of harmonic dualism,12 he defined parallel subhar-

monic series pitch aggregates (11 ,
1
2 ,

1
3 ,...) as utonal structures. Distinct13

normalised otonal and utonal ratios up to the 11th partial form six-note con-

stellations that he called hexads –

subsets. These transformations translate between harmonic and subharmonic structures.

12. Harmonic dualism is an attempt to symmetrically explain major/minor tonality, as ex-

pressed in theoretical works by Rameau, Tartini, Oettingen, Riemann, et al.

13. Since even number partials are octave transpositions of lower partials, only the odd partials

produce new pitch classes.
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Figure 1: Harry Partch’s tonality diamond, which also served as the layout of his Diamond

Marimba.

1

1
:
3

2
:
5

4
:
7

4
:
9

8
:
11

8
≡ otonal

and

1

1
:
4

3
:
8

5
:
8

7
:
16

9
:
16

11
≡ utonal

– interlocked to form a “tonality diamond”. With this construction, based

on a model devised by Max F. Meyer (1873–1967), Partch invented a just

intonation tone system and conceived of a musical instrument using this layout,

which he called the Diamond Marimba.

3. Melodic distance

It is useful to have a method of comparing the “absolute sizes” of various

intervals, or their melodic distances from 1
1 . Given two intervals written as

fractions, it is not immediately clear which one is lesser or greater, nor to what

extent, since their difference is only determined by dividing their ratios.

The proportional comparison of intervals or any perceived phenomenon is

described in the science of psychophysics by two principles called Weber’s Law

and Fechner’s Law, defined by Gustav Theodor Fechner (1801–1887). They

were first published in his book Elemente der Psychophysik, which established

the interdisciplinary study of how humans perceive the relative degree of
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physical magnitudes according to a quasi-logarithmic scale. He formulated

the concept of Just Noticeable Difference or JND, which refers to the smallest

change in a stimulus that may be perceived.

A logarithmic scale of finely-grained equal divisions may provide a “ruler”

against which all intervals may be measured. Octave transpositions of a

frequency have the unique quality of often being perceived as the same “note”,14

so the simplest approach is to base this scale of measurement on equal divisions

of the octave 2
1 , though this is to some extent an arbitrary choice.

15

Since intervals are compounded by multiplication of their ratios, an equal

division of the octave into n parts, expressed as a ratio, is the nth root of 2,

where n is the number of divisions.

(
n
√
2)n =

2

1

Most equal-division intervals are irrational because they are expressed by

means of radicals and may not be reduced to simple whole number fractions.16

Pitches that are irrationally related are not tuned in just intonation. There-

fore, their composite waveform is not periodic and there is no common funda-

mental. A geometric progression is, however, useful for comparing intervals

as its spacing is perceived as smooth and even.

12-tone equal temperament17 is an example of a scale of equal divisions.

Each step, called an equal-tempered semitone, is equivalent to the 12th-root

of 2, which may also be expressed as 2 raised to the power of 1
12 .

12
√
2 or 2

1
12

The ratio Rn of an equal-tempered interval comprised of n semitones is thus

the ratio of one semitone, raised to the power n.

Rn = (2
1
12 )n = 2

n
12

For instance, the wholetone is comprised of two semitones.

(2
n
12 )2 = 2

1
6

14. A property called octave equivalence.

15. Other tunings divide different intervals. The Bohlen-Pierce scale, for example, comprises

13 equal divisions of the perfect twelfth ( 3
1
).

16. An exception would be an interval that is an integer power of a fraction, e.g. the interval
64
27
, which is

(
4
3

)3
, may be divided into 3 parts, each being 4

3
.

17. An equal temperament may be referred to as an ED2 (or EDO) – equal division of the

octave. In this paper, “equal-tempered” refers to 12-ED2 unless otherwise specified. See

Section 9 for further discussion.
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Equivalently, for any ratio R, the number of comprised semitones nsemitones

may be calculated. For any interval outside the 12-ED2 gamut, this value will

not be a whole number.

12× log2(R) = nsemitones (1)

Mathematician Alexander J. Ellis (1814–1890) proposed the division of

each semitone into very small, equal units of measure, i.e. to the extent that

the human ear would be, for the most part, insensible to slight deviations

from exact ratios.18 By dividing each semitone into 100 units called cents, the

octave is pixelated into an equal division scale of 1200 parts, each equivalent

to the 1200th-root of 2. The general formula for a ratio’s size in cents ncents

results if 1200 is substituted for 12 in the previous expression.

1200× log2(R) = ncents (2)

For most listeners, the JND is less than 10 cents,19 though this depends

on frequency, amplitude, and timbre, as well as previous experience. JND

also becomes smaller when heard in a harmonic context, as many intervals –

especially small number ratios such as the octave and the fifth – are particularly

sensitive to tuning deviations, which are manifested by acoustical beats caused

by slightly mistuned partials and/or combination tones.

Various other systems of logarithmic measure for musical intervals have

been proposed. These include Joseph Sauveur’s mérides (43-ED2), closely re-

lated to the 1
5 -comma meantone temperament used in France at the time, which

he further subdivided into eptamérides (301-ED2) and decamérides (3010-

ED2).20 Arthur von Oettingen (1836–1920), following a proposal by English

scientist Sir John Herschel (1792–1871), used millioctaves (1000-ED2).

The MIDI standard defined various microtonal pitch deviations applicable to

digitally controlled musical instruments – e.g., the 14-bit pitch bend value can

be applied to an arbitrary interval measured in 12-ED2, dividing it into 16384

equal parts.21

18. Hermann von Helmholtz, On the Sensations of Tone as a Physiological Basis for the

Theory of Music, Second English Edition, trans. Alexander J. Ellis (New York: Dover, 1954),

p. 431.

19. The authors can attest to melodic discrimination as fine as 2 cents in the register around

260 Hz (middle C4) and harmonic discrimination < 0.1 cent with computer generated harmonic

spectra or three-tone sinewave chords presented in the ratio f1 : (f1 + f2)/2 : f2 by matching

difference tones.

20. Joseph Sauveur (1653–1716) was a French mathematician, physicist and a founder of

the science of musical acoustics.

21. midi.org, The MIDI 1.0 Specification, https://www.midi.org/specifications-old/item/the-

midi-1-0-specification, 1982.
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If the octave is divided into a whole number of equal units, then they

cannot be whole number ratios. Conversely, if an octave is divided into just

intonation intervals, they must be unequal and incommensurate. In this sense,

the particular complexities of just intonation and equal temperaments are

inversely related to each other.22

4. Microtonal notations

The Western five-line staff notation is fundamentally Pythagorean23 and

diatonic. The diatonic notes A through G divide each octave into five wholetones

and two diatonic semitones.

The ancient Greek Greater Perfect System begins, from lowest to highest

note, with a wholetone followed by two conjunct tetrachords. Each rising

tetrachord, when tuned diatonically,24 consists of a diatonic semitone followed

by two wholetones. This system was represented in De institutione musica

by Anicius Manlius Severinus Boethius (477–524) in the form of a diagram

using the successive letters A, B, C, D, E, F, G, etc. (Figure 2), which came

to be used as diatonic note names. The distinction between the conjoined

and disjoined third tetrachords synemmenon and diezeugmenon in the second

octave was notated using two forms of B – molle, written as � and durum,
written as � (eventually becoming Be and Bn). These eight notes comprise
the musica vera gamut.

Figure 2: Boethius’ labelling in De institutione musica of the diatonic notes as a progression

of letters.

Transpositions of the diatonic semitones B–C and E–F are written by

means of the additional “accidentals” e and v, the second of which was intro-
duced by Marchetto da Padova in the 1300s: e.g. A–Be and Fv–G.25 The
naming of intervals – unison, second, third, etc., and their “enharmonic alter-

22. An in-depth discussion of this topic may be found in Easley Blackwood’s bookThe Structure

of Recognizable Diatonic Tunings. For further analysis of equal-division tone systems see

Section 9.

23. “Pythagorean” refers to intervals combining only the primes 2 and 3.

24. In Greek theory, the tetrachords are divided into diatonic, chromatic, and enharmonic

divisions of the perfect fourth and are generally given in descending order of pitch.

25. Karol Berger, Musica ficta: Theories of accidental inflections in vocal polyphony from

Marchetto da Padova to Gioseffo Zarlino (Cambridge: Cambridge University Press, 2004), p.

22.
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ations”, i.e. diminished and augmented intervals – are based on this notation.

The structure is Pythagorean since Be and Fv correct the intervals at both

ends of the diatonic chain to continue the series of perfect fifths indefinitely in

both directions.

(Be) – F – C – G – D – A – E – B – (Fv)

Over the course of several hundred years, the Pythagorean consonances

(octave, fourth, fifth) came to be complemented in the practice of vocal music

by various imperfect consonances (major/minor thirds and sixths sung as small

number ratios).

In Harmonics, Claudius Ptolemy (ca. 100–170) provided string lengths

for an entire octave tuned in his tense diatonic “genus” – 60, 662
3 , 75, 80,

90, 100, 1121
2 , 120.

26 These correspond to a descending scale with the

following melodic frequency ratios – 10:9, 9:8, 16:15, 9:8, 10:9, 9:8, 16:15.

Whenever two wholetones occur in succession, they are of two different sizes

and together comprise the ratio 5
4 , called the Ptolemaic major third.

27 Tuned as

Ptolemaic intervals, thirds and sixths differ from their dissonant Pythagorean

counterparts by the interval 81
80 , known as the syntonic comma (κ5 = 21.51

cents).28

As Ptolemaic intervals entered into common practice amongmusicians, they

gradually became accepted by theorists in descriptions of monochord tunings.29

Gioseffo Zarlino (1517–1590) is credited with introducing the Ptolemaic tense

diatonic as a basis for music theory. He expanded the Pythagorean definition

of consonances to the senario, which comprised proportions drawn from the

numbers 1, 2, 3, 4, 5, 6, and 8. In particular, he described the two different

melodic divisions of the Ptolemaic major third, although he did not take the

further step of introducing an explicit notation of this difference.

Experimental keyboards tuned in just intonation were explored by Zarlino

and, among others, Francisco de Salinas (1513–1590),30 but the necessity for

26. Andrew Barker, Greek Musical Writings, Volume II: Harmonic and Acoustic Theory

(Cambridge: Cambridge University Press, 1997), p. 350.

27. “Ptolemaic” refers to intervals combining only the primes 2, 3, and 5.

28. In this article, the Greek letter κ stands for comma (cf. Section 5) and the numerical

subscript refers to its relevant prime dimension. The “main” commas of each dimension (e.g.

the Pythagorean comma, the syntonic comma, the septimal comma, etc.) have been given this

numerical notation (i.e. κ3, κ5, κ7, etc.) while other commas are assigned subscripts that relate

to their traditional naming (e.g. skhisma = κsk).

29. Bartolomé Ramos de Pareja, Musica practica (?Bologna: Baltasar de Hiriberia, 1482), p.

5.

30. Patrizio Barbieri, Enharmonic Instruments and Music 1470–1900 (Rome: Il Levante

Libreria Editrice, 2008), pp. 30–33.
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additional keys and complex multi-rank layouts inhibited the general adoption

of such instruments. Instead, various keyboard temperaments arose to better

approximate these new sounds.31 The so-called sistema partecipato (meantone

system), which divides the syntonic comma geometrically in four equal parts,

became standard practice. Each perfect fifth is deliberately narrowed by 1
4κ5

so that four successive fifths produce a Ptolemaic, rather than Pythagorean,

major third. These new pitches may still be represented using conventional

notation since the standard meantone tuning encompasses only twelve notes

(the series of fifths from Ee through Gv). On the other hand, extended meantone
instruments with split black keys distinguishing the difference of a lesser diesis
128
125 (κld = 41.06 cents) between sharps and flats,32 e.g. the cembalo cromatico,

did also achieve a certain measure of success in Italy and, though rare, continue

to be built today.

The Pythagorean wholetone is the difference between the perfect fifth and

the perfect fourth.

3

2
÷ 4

3
=

9

8

Two successive Pythagorean wholetones produce the Pythagorean ditone (or

major third).

9

8
× 9

8
=

81

64

1200× log2

(
81

64

)
= 407.82 cents

If A is tuned to 0 cents, this Pythagorean F a ditone below will be tuned -8

cents in relation to equal-tempered F.33

1200× log2

(
3
√
2
)
= 400 cents

The Pythagorean ditone is larger than the Ptolemaic major third by a syntonic

comma.

81

64
÷ 5

4
=

81

80

31. A complete discussion of the historical development of organ and other keyboard tempera-

ments falls outside the scope of this article. Excellent discussions of the topic may be found in

J. Murray Barbour’s Tuning and temperament and Klaus Lang’s Auf Wohlklangswellen durch

der Töne Meer.

32. See Section 5.

33. Cents are usually indicated on an electronic tuner in relation to 12-ED2.
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The Ptolemaic F below A will, therefore, be tuned 22 cents higher than the

Pythagorean F and 14 cents higher than equal-tempered F.

1200× log2

(
5

4

)
= 386.31 cents

Another way of considering the implications of this comma is to observe

that the Ptolemaic major third is comprised of of two different intervals, a

major wholetone and a minor wholetone.

9

8
× 10

9
=

5

4

Meantone systems compromise the difference between these two wholetones

by establishing a single irrational meantone with ratio
√

5
4 .

In order to clarify the relationship between interval and notation, many

special accidental systems have been devised. Nicola Vicentino (1511–1575)

notated the lesser diesis with a dot above the note and a 1
4κ5 alteration with a

comma (Figure 3) to differentiate two different tuning systems he proposed

for his archicembalo.34 Zarlino suggested × as a symbol for the lesser diesis

(Figure 4) in Le istitutioni harmoniche (1558). Vicente Lusitano (d. after

1561) divided the wholetone in 9 “commas” and notated them with vari-

ous numbers of strokes to show different amounts of sharpening35 (Figure

5). Giuseppe Tartini (1692–1770) introduced a new symbol for the natural

seventh 7
4 (Figure 6 and Figure 7) in his Trattato di musica (1754).

A century later, Oettingen, Moritz Hauptmann (1792–1868), as well as

Hermann von Helmholtz (1821–1894) advocated for the explicit notation of

the syntonic comma to pursue an adoption of Ptolemaic just intonation rather

than the 12-ED2 system, which was gaining popularity through the industrial

production and distribution of pianos.

In the beginning of the twentieth century, Partch devised several systems

of accidentals before finally adopting a ratio-based tablature notation for his

instruments. The early twentieth century also saw the emergence of various

ways of notating equal divisions of a tone. These include the well-known quar-

tertone symbols that were introduced by Richard Heinrich Stein (1882–1942)

as well as the accidental systems of Ivan Wyschnegradsky (1893–1979)

(Figure 8), Alois Hába (1893–1973), and numerous other twentieth century

composers. Especially unique is the compact one-line notation of Julián Car-

34. Nicola Vicentino, L’antica musica ridotta alla moderna prattica (Venice: Antonio Barre,

1555).

35. Vicente Lusitano, Introduttione facilissima, et novissima, di canto fermo, figurato, con-

traponto semplice, et in concerto (Rome: Antonio Blado, 1553).
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rillo (1875–1965) for any equal-division system, representing pitch classes

by ordinal numbers (Figure 9).

It has become common among microtonal composers and theorists who do

not wish to use a microtonal notation to notate the closest 12-ED2 analogue

of a pitch and include an indication in cents of its deviation. In some cases,

however, this approach suggests enharmonic36 substitutions based on the

logic of 12-ED2 (and derivates thereof, like 24-ED2 and 72-ED2) that falsify

intervallic relations implied by traditional notation.

More recently, composers are developing and using notations that encode

an interval’s information symbolically, which may optionally be combined

with cent deviation indications. Examples include Ben Johnston’s notation,

the Extended Helmholtz-Ellis JI Pitch Notation (HEJI) by Marc Sabat (b.

1965) and Wolfgang von Schweinitz (b. 1953), as well as Sagittal Notation

by George Secor (b. 1943) and David Keenan (b. 1959).37

In the remainder of this article, musical examples of just intonation are

notated usingHEJI (see Table 1 in the next section for a legend of the symbols).

Figure 3: Vicentino’s dot and comma notation demonstrating the almost just 8
7
septimal

wholetone and the just 6
5
minor third that results from raising the meantone minor third by

1
4
κ5.

36. See Section 5.

37. Information on HEJI Notation can be found at www.marcsabat.com and information
on Sagittal Notation can be found at www.sagittal.org. Information about Ben Johnston’s
notation can also be found on Marc Sabat’s website in an article titled “On Ben Johnston’s

Notation and the Performance Practice of Extended Just Intonation” (2009).
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Figure 4: Zarlino’s notation of the chromatic and enharmonic tetrachords using crosses.

Figure 5: Lusitano’s cross and stroke notation. Each stroke represents one “comma”. The

engraved example is a Ptolemaic interpretation of Lusitano’s harmonisation of the melodic

diesis.

Soprano

Alto

Tenore

Basso

    

     

     

 
  









o u S n m

n n t f m n

n t o u S n

n n
n n n
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Figure 6: Tartini notated the natural seventh with an symbol that looks like an inverted “7”.

Figure 7: Tartini composed figured bass examples demonstrating the septimal enharmonic

mode and the natural seventh treated as a consonance, melodically rising.

Figure 8: Excerpt from Wyschnegradsky’s Ainsi parlait Zarathoustra (1930).

15
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Figure 9: Carrillo used a tablature notation for microtonal intervals, as in Preludio a Cristobal

Colón (1922) shown here.

Figure 10: Notation of (a) the Pythagorean major third [or ditone] and (b) the Ptolemaic major

third between the notes A and F in various just intonation accidental systems.
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
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  

 
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  

 


 

  - -
- - - n n
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n n n

n o
(a)
Ben Johnston

(b) (a)
HEJI

(b) (a)
Sagittal

(b)

5. Commas and enharmonics

In a strict Pythagorean interpretation of the conventional staff notation, the

enharmonic interval of a diminished second between Ae–Gv or any transposi-
tion thereof is called the Pythagorean comma 531441

524288 (κ3 = 23.46 cents). Ae is
one comma lower than Gv. In 1

4κ5 meantone temperament the ratio
5
4 is just

and, consequently, the same difference of spelling is called the lesser diesis.

Note that, in this case, Ae is one diesis higher than Gv.

Figure 11: The fact that the same notation has been used historically in the two ways shown

below has led to commonly held uncertainties about the contextual intonation of flats and sharps.

 



 
 

 
 

 


    

 e e
e

e n
n n

n n
n n

v v v
e n n v e

Pythagorean just intonation
meantone

Staff notation does not normally differentiate between these two visually

identical representations of two different enharmonic intervals because it is

fundamentally one-dimensional. It may be understood to represent intervals

based on multiples of the prime number 3 or intervals based on multiples of

16
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the prime number 5, but not combinations of both. To accurately depict multi-

dimensional harmonic space, individual notes of the Pythagorean series of

fifths, based on prime number 3, must be altered by various explicitly notated

commas to represent interval ratios based on primes 5, 7, etc. and their

combinations – i.e. additional symbols must be introduced.

Enharmonics are defined as differences of spelling, which may or may not

involve (small) differences of intonation, depending on the tone system used.

Commas are defined as (small) differences of intonation, occurring between

enharmonics or between different microtonal variants of a single note.

Enharmonic differences do not necessarily constitute differences of into-

nation (e.g. E and Fe in 12-ED2). In just intonation, however, enharmonic
differences of spelling are always separated by the interval of some comma.

Figure 12: Lesser diesis between Gt and Af around Pythagorean Cn notated in just intonation.
Each arrow represents a raising or lowering of the Pythagorean notes by one syntonic comma.

Note that the Ptolemaic diatonic semitone 16
15
(c) comprises the minor chroma 25

24
(a) and the

lesser diesis 128
125

(b). See the Lusitano example in Section 4 for a contrapuntal setting of these

microtonal intervals.

     

 f n m n t f
(a) (b)

(c)

Table 1 presents comma notations introduced by HEJI for primes up to 31.

Most alterations affect the basic Pythagorean pitch classes. Note, however,

that both κ17 and κ29 affect the 5-dimension to notate the 17th and 29th

partials respectively, modifying the commonly occurring Ptolemaic ratios 16
15

and 9
5 . In addition, κ31 is applied to the 11-dimension to notate the 31st partial,

modifying the undecimal quartertone 33
32 . Refer to Figure 16 in the next section

to see how these accidentals are used to notate the first 32 partials of the

harmonic series.

Since each prime requires its own comma, combining primes compounds

their respective comma notations. For instance, the 35th partial (5 × 7) is

lowered by two commas – syntonic (κ5) and septimal
64
63 (κ7 = 27.26 cents).

81

80
× 64

63
=

36

35

17
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Table 1: HEJI Notation.

Prime Otonal Notation Utonal Notation Comma Deviation (cents)

3 E e n v V
lowers / raises by

Pythagorean apotome

( 2187
2048

)

113.69

5

D d m u U

C c l t T

B b k s S

F f o w W

G g p x X

H h q y Y

lowers / raises by

syntonic comma

(κ5 = 81
80
)

21.51

7

<

,

>

.

lowers / raises by

septimal comma

(κ7 = 64
63
)

27.26

11 4 5
raises / lowers by

undecimal 1
4
-tone

(κ11 = 33
32
)

53.27

13 0 9
lowers / raises by

tridecimal 1
3
-tone

(κ13 = 27
26
)

65.34

17 : ;
lowers / raises by

17-limit skhisma

(κ17 = 256
255

)

6.78

19 / *
raises / lowers by

19-limit skhisma

(κ19 = 513
512

)

3.38

23 3 6
raises / lowers by

23-limit comma

(κ23 = 736
729

)

16.54

29 ` @
raises / lowers by

29-limit comma

(κ29 = 145
144

)

11.98

31 - +
lowers / raises by

31-limit skhisma

(κ31 = 1024
1023

)

1.69
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Figure 13: Notation of the 35th partial – the 7th partial of the 5th partial, or, equivalently,

the 5th partial of the 7th partial – of the lowest note on the piano (A0).













<m

n
u

35°

1° 5°

Xenharmonic Wiki38 lists nearly 100 named commas ranging from 3.5 to

100 cents. There are as many commas as there are ways to tune any given

interval. Because of this, JI notation can sometimes become unwieldy to read,

e.g. when using more than three symbols in HEJI. One approach is simply to

avoid such situations by limiting the harmonic space. Another possibility is to

make an enharmonic leap, joining two points that nearly coincide. This may

simplify the spelling by means of a small pitch jump and thereby facilitate a

recentering of the harmonic space.

Figure 14: Excerpt from BRANCH: Plainsound Trio by Thomas Nicholson.

A movement through eight descending Pythagorean perfect fifths from the

note A reaching De differs by one skhisma (κsk = 531441
524288 = 1.95 cents) from

the Cu tuned as the fifth partial of the original note A (see Figure 15). This

very small interval may serve as a useful “connection” between Pythagorean

and Ptolemaic as will be discussed in the following section.

38. http://en.xen.wiki
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Figure 15: Construction of the skhisma (a) between the notes De and Cu.
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(a) 5°/A0

6. Prime limits

Pieces of music are traditionally said to share a common form when they

have similar large-scale temporal characteristics (e.g., minuet, rondo, sonata,

moment-form, etc.). Analogous categorisations have been made with regard

to the local temporal characteristics denoted by proportional rhythm39 (e.g.,

mensuration, hemiola, polyrhythm, metric modulation etc.) and may also be

applied to the “micro-temporal” properties of tuning structures.40 Partch

introduced the concept of prime limit – the largest prime number used to

generate intervals comprising a given tone system.

Prime limit categorisation allows a listener to know something about the

type and degree of tuning complexity of a piece of music and how the tuning

compares to that of other pieces. The specific prime numbers in a ratio deter-

mine its sonority because each prime generates a distinctive new interval. It

is, therefore, useful to return to the harmonic series to consider each prime’s

intervals in relation to the other partials.

39. Henry Cowell, New Musical Resources (New York: Alfred A. Knopf, 1930), Part II:

Rhythm.

40. Ben Johnston,Maximum Clarity and OtherWritings on Music, ed. Bob Gilmore (Chicago:

University of Illinois Press, 2006), “Scalar Order as a Compositional Resouce” (1965).
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Figure 16: The first 32 partials of the harmonic series of A0 notated in HEJI.


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The sound of intervals related as multiples or powers of the same prime

factor(s) share common characteristics and intonation. For example, the 15th

partial combines with the 5th partial and the 3rd partial to create a minor

triad 10:12:15 that complements the major triad 4:5:6 by inverting the order

of the two Ptolemaic thirds 5
4 and

6
5 . Prime limit informs a listener about the

constrained collection of ways intervals may be tuned in a given context.

2-limit just intonation only allows for octave transpositions of a single tone.

3-limit (Pythagorean) just intonation additionally allows for the perfect fifth

and its inversion41 (i.e. the perfect fourth) as well as their powers (stacks of

fifths and fourths), filling in the frequency range with different notes. 5-limit

(Ptolemaic) just intonation supplements the Pythagorean pitch space with pure

major and minor thirds and their inversions (i.e. pure major and minor sixths).

Each step in the Ptolemaic dimension generates a new set of Pythagorean

pitches offset by a syntonic comma.42

To better visualise this concept, it is possible to draw a Tonnetz or lattice

diagram in the manner devised by Leonhard Euler (1707–1783).

41. The inversion of an interval b
a
is the octave complement 2÷ b

a
≡ 2a

b
.

42. Every new prime number generates its own dimension by combining with each of the

previous primes to replicate the lower prime limit harmonic space offset by a new comma.
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Figure 17: 5-limit lattice diagram from the string quartet Euler Lattice Spirals Scenery (2011)

by Marc Sabat.

As defined previously in Figure 15, an enharmonic connection exists be-

tween the 3- and 5-limit that allows for a good approximation of consonant

5-limit triads by means of exclusively 3-limit ratios with a small error equal

to κsk. In Ellis’ description of this construction, which he calls skhismatic

temperament,43 he extends the Pythagorean series, stating that

[t]he condition is that the Fifths should be perfect and the Skhisma should

be disregarded.

... Having an English Concertina (which has 14 notes) tuned in perfect

Fifths from Ge to Cv ..., I have been able to verify ... that, although
A–Cv–E [and] E–Gv–B are horrible chords, A–De–E [and] E–Ae–B
are quite smooth and pleasant.

Ellis’ “temperament”, which is actually an enharmonic extension of Pythagorean

intonation, may be constructed by tuning the perfect fifth C–G as 2:3 and

projecting a series of six perfect fifths upward from G as well as six perfect

fifths downward from C. By extending this system to ten fifths upward from G

and ten downward from C, one arrives at the tuning of the 22 Indian śrutis

proposed by Pichu Sambamoorthi (1901–1973).44

The term just intonation commonly refers to the 5-limit. Johnston uses the

term extended just intonation45 to refer to the inclusion of primes greater than

5. From these prime limits onward (7, 11, 13, etc.), timbral nuances and the

43. Helmholtz, On the Sensations of Tone as a Physiological Basis for the Theory of Music, p.

435.

44. cf. Wolfgang von Schweinitz’s transcription of Sambamoorthi’s text and diagrams at

http://www.plainsound.org/pdfs/srutis.pdf.
45. Johnston, Maximum Clarity and Other Writings on Music, p. 203.
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possibilities for new intervals and chords become compositionally boundless.

The 7-limit has a strong fusion sonority and remains, to a certain degree,

intuitive, as the natural seventh 7
4 is often used by Barbershop quartets and,

occasionally, by brass instruments to tune dominant seventh chords. As well,

the 7-limit may be heard in jazz music as an intonation of melodic “blue notes”.

In his innovative and ongoing work The Well-Tuned Piano, La Monte Young

(b. 1935) uses primes 2, 3, and 7, but excludes 5 because of its historical

connotations.46 11- and 13-limit tunings47 open up the worlds of precisely

tuned quarter- and thirdtones, which, to date, have primarily been explored in

melodic contexts, e.g. in Arabic and Persian modal traditions.

Many composers have been interested in exploring the degree to which

prime limit may be extended before harmonic nuances become effectively

indistinguishable. Naturally, as with most things dealing with perception,

there is no absolute answer because hearing is increasingly subjective as

sounds become more complex. The upper bound for prime limit is probably

between 23 and 31 for discerning (and trained) listeners.48 Nevertheless, it is

possible for higher primes to be tuned in aggregates when they are summation

tones of lower sounds.49

Figure 18: 37 as summation tone of 12 and 25 from Les Duresses (2004) by Marc Sabat.

7. Consonance and dissonance

The terms consonance and dissonance are often employed to describe the

interaction of tones. The words themselves very easily elude clear definition

46. To specify a particular subset within a prime limit, Tenney’s concept of projection space,

which collapses the 2-dimension to produce pitch-classes, may be used to differentiate between

the general 7-limit (3,5,7-space) and Young’s 7-limit (3,7-space); James Tenney, From Scratch,

Writings in Music Theory, ed. Larry Polansky et al. (Illinois: University of Illinois Press,

2015), Chapter 18.

47. Partch’s 43-tone scale is an 11-limit system.

48. See Section 7 for a discussion of tuneable intervals.

49. As in the Fourth String Quartet – infinite to be cannot be infinite, infinite anti-be could

be infinite (1976–87) for 9 string quartets by Horațiu Rădulescu.
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and have historically inspired many contradictory descriptions proposed by

musicians, theorists, and scientists. There are two broad categories that may

be distinguished. Musical consonance and dissonance refers to various, and

shifting, systems of categories referring to sound-combinations as defined by

different musical practices (dissonances requiring special context, preparation,

resolution etc.). Psychoacoustic consonance and dissonance refers to perceived

qualities of the composite sound like smoothness or roughness, harmonicity or

inharmonicity, fusion, spectral balance, periodicity, and beating.

In his 1987 book A History of Consonance and Dissonance, composer

James Tenney (1934–2006) identified five distinct consonance-dissonance

concepts (CDCs) arising in Western music culture.

... the words consonance and dissonance ... have been used, historically,

in at least five different ways – expressing five distinctly different forms

of the CDC. Before the rise of polyphonic practice they were used in an

essentially melodic sense, to distinguish degrees of affinity, agreement,

similarity, or relatedness between pitches sounding successively. During

the first four centuries of the development of polyphony they were used

to describe an aspect of the sonorous character of simultaneous dyads,

relatively independent of any musical context in which they might occur.

In the 14th century the CDC began to change (again) in conjunction with

the newly developing rules of counterpoint, and a new system of interval-

classification emerged which involved the perceptual clarity of the lower

voice in a polyphonic texture (and of the text which it carried). In the

early 18th century, ‘consonance’ and ‘dissonance’ came to be applied to

individual tones in a chord, giving rise to a new interpretation of these

terms which would eventually yield results in diametric opposition to

all of the earlier forms of the CDC. Finally – in the mid-19th century –

a conception of consonance and dissonance arose in which ‘dissonance’

was equated with “roughness,” and this had implications quite different

from those of earlier forms of the CDC.

... I ... suggest the following [terminology]: for CDC-1, monophonic or

melodic consonance and dissonance; for CDC-2, diaphonic consonance

and dissonance; for CDC-3, polyphonic or contrapuntal consonance and

dissonance; for CDC-4, triadic consonance and dissonance (this form

is often called “functional,”, but this is not altogether accurate either,

and might be better reserved for the more purely functional conception

articulated by Riemann ... and finally – for CDC-5 – timbral consonance

and dissonance.50

50. James Tenney, A History of Consonance and Dissonance, First Edition (UK: Routledge,

1988), p. 4 and p. 100.
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The first four CDCs, numbered in order of their historical emergence,

are essentially musical, derived from theory and practice; the most recent is

psychoacoustic, proposed by Helmholtz.

The German philosopher and phenomenologist Carl Stumpf (1848–1946)

offered an alternative perceptual theory to Helmholtz’s categories of smooth-

ness and roughness. His thesis was that consonance is determined by the

extent to which an aggregate resembles a single tone: namely, by how well the

partials match a single harmonic series.51 This psychoacoustic reformulation

of CDC-2 appears to be borne out by contemporary studies.

Composers Marc Sabat and Wolfgang von Schweinitz proposed a scale

of relative consonance based on “tuneable intervals”. Originally, these were

established by empirical means. All of the ratios up to three octaves wide,

generated from the first 28 harmonics, were tested, and any intervals that

could not be directly tuned as dyads when played simultaneously in the middle

register on string instruments were eliminated. The remaining intervals were

placed in three broad groupings based on the difficulty with which they could

be tuned. Notably, narrower intervals, which fall within a critical band – all

intervals melodically smaller than 9
8 – were determined to not be tuneable. The

largest denominator which was found to produce a tuneable interval was 12.

Sabat suggested an expanded definition of consonance, also based on CDC-2,

to be any tuneable sonority.

The concept of tuneable intervals proposes a new musical definition of the

terms consonance and dissonance, one that does not contextually prescribe

or proscribe any sonority but simply distinguishes those sounds that may be

tuned exactly. The definition may be made more precise (and quantifiable)

according to the following model. Given any integers a and b in lowest terms,

their ratio is said to make a potentially tuneable interval tuneable between two

tones of appropriate timbral richness with fundamental frequencies f and b
af

if the periodicity pitch f
a ≥ 20 Hz and the least common partial bf ≤ 6000

Hz. These (approximate) limits are based on empirical testing, and appear to

closely match the frequency range (ca. 30–5000 Hz), within which the human

auditory system demonstrates a capacity for neural encoding of temporal

information. Additional size restraints may be placed based on desired prime

limit, critical bandwidth (depending on f), and on maximum interval size, for

example in the middle register 9
8 ≤ b

a ≤ 8
1 . Tuneable intervals may be ordered

in terms of relative consonance, based on various measures discussed in the

next section.

51. Tenney, p. 30.
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8. Harmonic distance and intersection

Harmonic fusion is perceived as the melding of an aggregate of individual

pitches accompanied by a distinctive vibrating sonority called periodic signa-

ture, discussed in Section 1. If the periodicity pitch falls in the sub-audio range

(ca. beyond the lowest A of the piano), the phenomenon of acoustic beating

between partials assumes a dominant role. As the frequency of the periodicity

pitch rises into the lower part of the audio range and eventually passes through

the register of the human speaking voice, fusion becomes increasingly tangible

and different frequency ratios create very clear, distinct qualities of sound. In

higher ranges, the contrast between consonance and dissonance becomes again

less discernible as the rate of interference between frequencies increases.

Generally, smaller ratios result in smoother perceived fusion within a

given register. The simplest ratios take the form n
1 and are called absolute

consonances. They produce the smoothest manifestations of harmonic fusion

because all partials of the upper pitch are potentially harmonics of the lower

pitch. As intervals increase in numerical complexity, i.e. as the denominator

increases, the periodicity pitch descends. Fusion takes on a periodic purring

or roughness that is the most characteristic sonority associated with just

intonation. Eventually, ratios become so complex that the fusion sound is

blurred and no longer readily distinguishable from irrational tempered or

mistuned intervals.

Tenney defined a measure called harmonic distance. Smaller harmonic

distance values correspond to a smaller “city block” distance between pitches,

as measured in harmonic space, which is defined as a multi-dimensional lattice

with prime-number absolute consonances of the form p
1 as fundamental steps

of each dimension.52 For a ratio b
a in lowest terms, its harmonic distance is

calculated by the following expression.

HD = log2(b× a) (3)

The product of b and a is equivalent to the least common partial shared by

harmonic series above b and a. In Equation (3), harmonic distance is, there-

fore, a measure of the number of octaves, evaluated exponentially, from the

periodicity pitch (1) to the least common partial (b× a). Since every rational

number can be uniquely expressed as a product of powers (α) of prime numbers

52. Tenney, From Scratch, Writings in Music Theory, Chapter 12. Tenney thought of

harmonic distance as a measure applicable to both successively and simultaneously sounded

intervals. He believed that it could be usefully applied to pure tones (sinewaves) as well as

spectrally rich timbres.
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(p), the following expressions may be formulated.

b

a
=

∏
i

pαi
i −→ b× a =

∏
i

p
|αi|
i

HD may, therefore, be expressed more specifically as a summation of powers

of each prime factor, since log(m× n) = logm+ logn and logxk = k logx.

HD =
∑
i

|αi| log2 pi (4)

Equation (4) demonstrates the “city block” interpretation of harmonic distance.

The interval with the smallest harmonic distance is the unison, as log2(1×1)

returns an HD value of 0. While it may sometimes seem counterintuitive to

conceive of the unison as an “interval”, the concept of harmonic distance

affords an insight into this question. It is logical that two identical frequencies

would have the smallest possible harmonic distance – that is, have no harmonic

distance. This is because the partials of either note may be absorbed into

the harmonic series of the other, colouring its timbre; the unison is the only

interval with this symmetrical property.

It is often proposed that harmony and timbre are, in fact, equivalent. But

in this case, it is clear that harmony is the more general principle: two different

timbres, tuned in unison, have an harmonic distance of 0. In musical terms,

this simply states that an harmonic construct may often retain its identity even

when the timbres are altered. At the same time, harmony, particularly when

tuned in just intonation, is actually dynamically altering timbres as well as

creating new ones.

A closely related measure, also from Tenney, called intersection53 (I) may

be used to express the ratio between aggregate partials of two complex tones

and the entire harmonic series of their periodicity pitch. Both measures offer

similar, but interestingly differentiated rankings of relative consonance.

Given a ratio in lowest terms b
a , the intersection of the interval with respect

to its periodicity pitch may be expressed as the following.

I =
a+ b− 1

ab
(5)

This equation counts the number of partials of each pitch a and b up to their

least common partial ab subtracting 1 so that the least common partial itself

is only counted once. These partials are, respectively, {a, 2a, 3a, ..., ba} and
{b, 2b, 3b, ..., ab}. Since the pattern of partials repeats between each multiple
of ab, the least common partial also represents the interval’s harmonic period.

53. Tenney, Chapter 11.
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Unlike harmonic distance, which does not differentiate otonal and utonal

structures, harmonic intersection does and, therefore, may be extended to

aggregates of any number of pitches tuned in just intonation to provide an

accurate quantitative measure of harmonicity.

9. Equal division tone systems

Equal-division systems, discussed earlier as a way of comparing the melodic

size of intervals, are also used to compose music in their own right. Advantages

of such tone systems include their various symmetric properties, including the

ability to transpose by any interval, i.e. to duplicate identical relationships

at any pitch-height without the need to introduce new pitches. They also

offer the possibility of approximating rational intervals using a set of fixed

pitches that serve as a temperament, or deliberate mistuning of the rational

intervals. For instruments whose pitches are fixed, equal temperaments offer

a practical tuning “compromise”, possibly applicable to various compositions

without requiring a complete retuning.

There are an infinite number of possible rational intervals, just as there

are infinitely many pitch-classes in any harmonic series. A temperament

represents these as best as possible with a finite set of options. A consistent

temperament, as defined by Paul Ehrlich (b. 1972), is one in which the best

representation of constituent intervals – up to some fixed limit – sum to the best

representation of the combined interval.54 Inconsistency – or “roundoff error”,

which any temperament eventually exhibits – results in inherent ambiguities,

or paradoxes, arising between symmetrical properties of the tone system and

the harmonic intervals it seems to represent. This ambiguity may or may not

be considered a musically interesting quality. It is, however, important to note

that it is based on fooling the ear.

In 12-ED2, certain formulaic “tonal progressions” – in particular cyclic

sequences (by thirds, fifths, etc.) – are made possible without microtonal disso-

nances or transpositions, taking advantage of this system’s “rough pixelation”

or “soft focus”. Strict JI composers like Johnston reject this approach as

being a form of trickery or deception and, therefore, intellectually dishonest.

Advocates of temperament, like Jean-Philippe Rameau (1683–1764), on the

other hand, praise the magical quality of being transported to a new region

54. In this sense, 12-ED2 is consistent, for example, in a way that 24-ED2 is not. Consider

the chord 4:5:7, which is comprised of a major third and a diminished fifth, outlining a natural

seventh. In 12-ED2 the nearest representations of each interval, 5
4
≈ 4 steps and 7

5
≈ 6

steps, add up to the nearest representation of the outer interval, 7
4
≈ 10 steps. In 24-ED2 the

respective values are 8 steps, 12 steps and 19 steps, which do not sum.
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of the harmonic space (by an enharmonic reinterpretation of the diminished

chord, for example), sensing “all the harshness”55 of the quartertone without

having it explicitly articulated as part of a dissonant interval.

Elaborated examples of composition using fine-grained equal-divisions

may be found in the works of Carrillo and Wyschnegradsky. Drawing on his

experience as a violinist, Carrillo developed a microtonal point of view about

musical exploration, which he called “sonido 13” – the thirteenth sound. A

talented musician, he was one of the first composers to write in a microtonal

idiom for the symphony orchestra. Wyschnegradsky, on the other hand,

composed a large body of microtonal music that was almost exclusively written

for ensembles featuring variously retuned pianos, occasionally in combination

with other instruments. An influential teacher and mentor, his theoretical

writings, in particular La Loi de la Pansonorité from 1953, describe an

ultrachromatic pitch-space that pixelates the perceived frequency range into

a palette of compositionally accessible tonal material. His work inspired an

entire generation of microtonal composers, including Bruce Mather (b. 1939)

and Pascale Criton (b. 1954).

In such contexts, the interpretation of intervals no longer depends entirely

on their sound alone, but must also be deduced from their context. This

alteration of listening focus is perhaps the fundamental difference between

conceiving of music in a temperament or in just intonation. The increased

interest today in exploring perceptions of sound and time as fundamental

materials of music invites a kind of listening, which the appreciation of just

intonation also depends upon.

The most commonly explored ED2s may be loosely divided into three

groups. First, there are numerous systems based on the antiprime 12, which

may readily be divided in 2, 3, 4 and 6 equal units, and which generates various

multiples (24, 36, 48, 72, 144, etc.). These systems share the well-known

“closed circle” of 12 well approximated fifths,56 replicating it at various micro-

tonal offsets. 72- and 144-ED2 closely approximate some of the most common

tuneable rational intervals up to the 23-limit, which has led to their adoption

for quasi-JI works by some composers, including Ezra Sims (1928–2015),

James Tenney, Hans Zender (b. 1936), and Georg Friedrich Haas (b. 1953),

and Marc Sabat, among others.

Composers associated with the European “spectral” technique, pioneered

55. Deborah Hayes, “Rameau’s theory of harmonic generation: an annotated translation

and commentary of Génération Harmonique by Jean-Philippe Rameau” (PhD diss., Stanford

University, 1968), p. 178.

56. The 12-ED2 fifth is almost 2 cents smaller than the JI ratio 3
2
, a difference that beats

slowly in the middle register but is only minimally perceptible on the modern piano.
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by Karlheinz Stockhausen (1928–2007), Horațiu Rădulescu (1942–2008),

Gérard Grisey (1946–1998), Tristan Murail (b. 1947), and Claude Vivier

(1948–1983), have often used various approximations to simulate the har-

monic series, combination tones and distorted spectra. Rădulescu’s music is

especially noteworthy for its extensive exploration of scordature and use of

extremely high natural harmonics.

Two additional groups of equal-division systems approximate meantone

or Pythagorean tunings respectively. The “extended meantone” systems (see

Table 2) divide the 5 wholetones within an octave into unequal parts, a smaller

“chromatic” and a larger “diatonic” semitone. The “Pythagorean” systems

(see Table 3) take the same number of units per wholetone but reverse the

numbers assigned to the chromatic and diatonic semitones.

53-ED2, in particular, has received considerable attention. Its step size,

22.64 cents, is known as Mercator’s comma (κM ) and lies between the syntonic

comma (κ5) and the Pythagorean comma (κ3). It was used to describe the

Turkish tone system in a theory developed by Suphi Ezgi (1869–1962),57 and

was advocated as an ideal tuning by 19th century European theorists, consid-

ered harmonically superior to 12-ED2 because of its very close approximation

of many consonant Ptolemaic ratios. In particular, it is the smallest ED2 to

clearly approximate both the major and the minor wholetones.

Perhaps the most obvious point of objection to any equal-division system

is the problem of melodic granularity, i.e. the degree to which very subtle

differences between various JI intervals are tempered out. One of the objections

to Suphi Ezgi’s comma-based approximation of Turkish intervals is that the

very subtle contextual variations of intonation in melody are not accurately

represented. Similarly, in a harmonic context, voices and instruments of flexible

pitch make very subtle adjustments to distinguish particular progressions. The

only way to achieve this kind of accuracy, in fact, is to define each interval

exactly, within the bounds of auditory perception. Only a just intonation tuning

system or an equal-division system finer than the JND offer possibilities of

realising such an approach.

57. Ioannis Zannos, Ichos und Makam: Vergleichende Untersuchungen zum Tonsystem der

griechisch-orthodoxen Kirchenmusik und der türkischen Kunstmusik (Bonn: Orpheus Verlag,

1994), p. 18.
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Table 2: Comparison of some quasi-meantone equal-division systems.

Number of

divisions

Size of fifths

in cents

Units per

wholetone

Size in

cents

Units per diatonic

semitone

Size in

cents

19-ED2 694.74(
1
3
κ5

) 3 189.47 2 126.32

31-ED2 696.77(
1
4
κ5

) 5 193.55 3 116.13

43-ED2 697.67(
1
5
κ5

) 7 195.35 4 111.63

55-ED2 698.18(
1
6
κ3

) 9 196.36 5 109.09

Table 3: Comparison of some quasi-Pythagorean equal-division systems.

Number of

divisions

Size of fifths

in cents

Units per

wholetone

Size in

cents

Units per diatonic

semitone

Size in

cents

17-ED2 705.88 3 211.76 1 70.59

29-ED2 703.45 5 206.90 2 82.76

41-ED2 702.44 7 204.88 3 87.80

53-ED2 701.89 9 203.77 4 90.57

10. Toward a possible music

It is true that the theory and mechanisms of just intonation are fascinating

in their own right and, as many tuning enthusiasts would agree, necessary

to confront. To truly appreciate the enormous musical potential of rational

tuning as composers, interpreters, and, most importantly, as listeners, it is

crucial to be immersed in it practically in order to connect theory with sound.

After all, just intonation does not require theoretical minutiae – as elegant as

they may be – to justify its beauty and musical value; it is already intuitively

ingrained in the way humans hear. An understanding of ratios, cents, commas,

etc. merely provides tools to better comprehend and compare what is heard

(śruti) as well as to imagine, invent, and develop what could be heard.
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11. Score excerpts

Figure 1: 5-limit enharmonic intervals as in bar 4 of Tenebrae factae sunt (1611) by Carlo

Gesualdo di Venosa.
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Tenebrae factae sunt
From Responsoria (1611)

SSATTB a cappella

Darkness was made [darkness covered the earth]
when the Jews had crucified Jesus:
and around the ninth hour Jesus cried out with a loud voice:
My God, why have you abandoned me?
And, with his head bowed, he yielded up his spirit.

Jesus, crying out with a loud voice, said:
Father, into your hands I commend my spirit.

And, with his head bowed, he yielded up his spirit.

Matthew 27:45-46, 50—Mark 15:33-34, 37—Luke 23:44, 46
    cf. Isaiah 60:2, Amos 8:9-10, Psalm 22:1, Psalm 31:6

Ténebrae fáctae sunt,
dum crucifixíssent Jésum Judaéi:

et círca hóram nónam exclamávit Jésus vóce mágna:
Déus méus, ut quid me dereliquísti?

Et inclináto cápite emísit spíritum.

Exclámans Jésus vóce mágna, áit:
Páter, in mánus túas comméndo spíritum méum.

Et inclináto cápite emísit spíritum.

Responsory at Matins 
for Good Friday

Jacob Carlo Gesualdo, di Venosa
(c.1561-1613)

edition by Chris Mueller 
http://www.benesonarium.com
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Figure 2: Excerpt from an 11-limit trio published by Giovanni Battista Doni, composer unknown.

Compositione per il Diatonico Equabile (ca. 1637) transcribed into HEJI.
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Figure 3: 7-limit “enharmonic meantone” excerpt fromToccata Settima (ca. 1640) byMichelan-

gelo Rossi.
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Figure 4: 7-limit excerpt from By the Rivers of Babylon (1931) by Harry Partch.

137th Psalm

BY THE RIVERS OF BABYLON

Harry Partch
Santa Rosa, August 1931

Chicago, Jan. 1, 1942
Ithaca, June 27-28, 1943

transcription to Helmholtz-Ellis Accidentals with annotations by Marc Sabat
Edenkoben, May 2006 / Berlin, June 2009
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Figure 5: Three examples from Kyle Gann’s analysis and transcription of La Monte Young’s

The Well Tuned Piano (1964–73–81–present).
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Figure 6: Horațiu Rădulescu’s Fourth String Quartet “infinite to be cannot be infinite, infinite

anti-be could be infinite” (1976–1987) for nine string quartets with spectral scordatura.
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Figure 7: 13-limit excerpt from Ben Johnston’s String Quartet No. 5 (1979) with otonal and

utonal chords in extended just intonation.

Figure 8: 7-limit excerpt from James Tenney’s Harmonium No. 7 (2000) with approximate

arrow and exact ratio notation.
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Figure 9: 13-limit excerpt from DIE KANTATE oder, Gottes Augenstern bist du (2002–3)

for speaking voice, soprano, violin, viola, horn, tuba and live sound projection by Wolfgang von

Schweinitz.
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Figure 10: 13-limit excerpt from Gradients of Detail (2006) by Chiyoko Szlavnics.
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Figure 11: 11-limit excerpt from Asking ocean (2016) for solo string quartet and 16 instru-

ments by Marc Sabat.
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Figure 12: 7-limit excerpt from Prisma Interius V (2017) by Catherine Lamb.
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Figure 13: 17-limit excerpt from BRANCH: Plainsound Trio (2018) for three sustaining

instruments or voices by Thomas Nicholson.
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Index

1
4-comma meantone, 16

Boethius, 9

Bohlen-Pierce scale, 7

Carrillo, Julián, 13, 29

CDC (Tenney), 24

combination tones, 8

consistency (Ehrlich), 28

consonance and dissonance, 23

Criton, Pascale, 29

De institutione musica, 9

diamond marimba, 6

ED2 (discussion), 29

EDO systems, 7

Ehrlich, Paul, 28

Ellis, Alexander J., 8, 22

equal divisions, 7

Euler, Leonhard, 21

Extended just intonation, 22

Ezgi, Suphi, 30

Fechner, Gustav Theodor, 6

fusion, 2–4, 24, 26

GCD, 3

Grisey, Gérard, 30

Haas, Georg Friedrich, 29

harmonic distance, 26

harmonic intersection, 27

harmonic partials, 2

harmonic period, 27

harmonic series, 2–4, 25–28

harmonic space, 26

Hauptmann, Moritz, 12

HEJI notation, 13

Helmholtz, Hermann von, 12, 25

Herschel, John, 8

Hába, Alois, 12

imperfect consonances, 10

interval, 3, 25

interval (tuneable), 25

Johnston notation, 13

Johnston, Ben, 4, 13, 28

just noticeable difference, 7, 30

Keenan, David, 13

least common partial, 2, 25, 26

logarithmic scale, 7

Lusitano, Vicente, 12

Mather, Bruce, 29

meantone temperaments, 30

melodic distance, 6

Meyer, Max F., 6

Murail, Tristan, 30

musica vera, 9

normalised ratio, 5

octave equivalence, 7

Oettingen, Arthur von, 8, 12

otonal, 5

Partch, Harry, 3, 5, 6, 12, 20

periodic signature, 2

periodicity pitch, 2, 25–27

prime limit, 20

Pythagorean temperaments, 30

quartertone notation, 12

Rameau, Jean-Philippe, 28

ratio, 3

relative consonance, 27
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Rădulescu, Horatiu, 30

Sabat, Marc, 13, 25, 29

Sagittal notation, 13

Salinas, Francisco de, 10

Sambamoorthi, Pichu, 22

Sauveur, Joseph, 8

Schweinitz, Wolfgang von, 13, 25

Secor, George, 13

Sims, Ezra, 29

skhismatic temperament, 22

sonido 13 (Carrillo), 29

staff notation, 9

Stein, Richard Heinrich, 12

Stockhausen, Karlheinz, 30

Stumpf, Carl, 25

subharmonic series, 4

syntonic comma, 10

Tartini, Giuseppe, 2, 12

temperament, 28

Tenney, James, 24, 26, 29

The Well-Tuned Piano, 23

tonality diamond, 6

Turkish music, 30

utonal, 5

Vicentino, Nicola, 12

Vivier, Claude, 30

Wyschnegradsky, Ivan, 12, 29

Young, La Monte, 23

Zarlino, Gioseffo, 10, 12

Zender, Hans, 29
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