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Abstract

Natural harmonics, i.e. partials and their harmonic series, may be isolated on
a vibrating string by lightly touching specific points along its length. In addition
to the two endpoints, stationary nodes for a given partial n present themselves
at n − 1 locations along the string, dividing it into n parts of equal length. It
is not the case, however, that touching any one of these nodes will necessarily
isolate the nth partial and its integer multiples. The subset of nodes that will
activate the nth partial (termed playable nodes by the authors) may be derived
by following a mathematically predictable pattern described by so-called Farey
sequences. The authors derive properties of these sequences and connect them to
physical phenomena. This article describes various musical applications: locating
single natural harmonics, forming melodies of neighbouring harmonics, sounding
multiphonic aggregates, as well as predicting the relative tuneability of just intervals.

1 Playable nodes isolate partials of a vibrating string

Consider a string fixed at both ends that is relatively thin with respect to its length L.
Bowing or plucking disturbs the string by introducing a transverse wave, which causes the
string to vibrate.1 Since the endpoints of the string are fixed, they remain at rest. A point
of rest along a vibrating string is called a node while the point of maximum displacement
exactly halfway between two nodes is called an anti-node.

The wave moves along the string in both directions and reflects back inverted at both
ends.2 Reflected waves that are in phase with waves travelling in the opposite direction
establish a waveform that is constant in time. This stable superposition of waves travelling

∗Published in TEMPO 74, no. 291 (2020): 86–97. doi:10.1017/S0040298219001001. (Note, this is the
authors’ original manuscript).

1The frequency of a transversely vibrating string depends on its length L and the speed of propagation
of the wave v, related to the tension T and mass per unit length µ as described by Mersenne’s law:
f = v

2L ≡ 1
2L

√
T
µ . Note it is also possible to induce longitudinal vibration in a string by stroking (i.e.

bowing parallel to the string), a technique Ellen Fullman uses to play her Long String Instrument. In the
case of longitudinal vibration, propagation depends rather on small differences in local tension (stiffness)
related to the string’s modulus E and not the mean tension T ; thus, in this case the frequency depends
merely on the string’s length and its physical properties: f = v

2L ≡ 1
2L

√
E
µ .

2The amplitude of the vibration diminishes over time due to friction unless energy is continuously
reintroduced into the system, e.g. by means of bowing.

1
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0 L

Figure 1: The ends on the string form nodes while the point of maximum displacement in the
middle of the string forms an anti-node.

in opposite directions is called a standing wave because the string appears to be ‘standing
still’. If the only nodes present in the standing wave are the endpoints, then the string is
vibrating in its fundamental mode, producing the 1st partial3 with frequency f1 (Figure
1). This frequency is referred to as the fundamental frequency and is often heard as the
pitch of the string.4 In the fundamental mode, a single propagation along the string only
produces a half period of the sinusoidal waveform, so the wavelength of the 1st partial is
twice the length of the string (2L).

Any division of the string into a whole number of parts produces a possible mode of
vibration. For example, dividing the string into b equal parts places nodes at distances L

b

apart (0, 1
b
L, 2

b
L, ..., b

b
L = L). These nodes take the form a

b
L and the mode of vibration

produces the bth partial with frequency fb = bf1. Caspar Johannes Walter has summarised
the function of these fractions in practical terms, writing ‘[t]he denominator defines ...
the [resulting] pitch and the numerator makes the position of the node along the string
concrete.’5

0 L
a
b
L1

b
L b−1

b
L

Figure 2: Mode of a the bth partial produced by lightly touching the string at a
bL.

Touching the string at a
b
L dampens all modes of vibration that do not have a node at

a
b
. Only modes that allow the string to be at rest at a

b
may form standing waves and, in

most cases, the perceived pitch of the string will change according to the lowest partial
possible under these conditions. For example, touching at 1

2
L dampens the 1st and all

other odd partials, each of which has an anti-node at 1
2
L, while allowing the 2nd partial

and its multiples to vibrate. The pitch of the string sounds an octave higher because the
3In this article, when the authors refer to producing or sounding “partials” of a string, the term is

understood as referring to the fundamental frequency perceived. These sounds are actually aggregates
consisting of a partial along with its integer multiples, forming an harmonic series.

4Partials are individual sinusoidal frequency components of a non-sinusoidal sound. Aggregates that
consist of whole number multiples of a single, generating fundamental frequency (present or not) are
perceived as harmonic sounds because they form part of one harmonic series. Partials of a vibrating
string are, for the most part, harmonic.

5Caspar Johannes Walter, ‘Mehrklänge auf dem Klavier. Vom Phänomen zur Theorie und Praxis
mikrotonalen Komponierens’, in Pätzold and Walther (eds.), Mikrotonalität – Praxis und Utopie, SMS
Band 3 (Mainz: Schott Music, 2014), p. 16. From original: ‘Der Nenner definiert also die Tonhöhe und
der Zähler konkretisiert die Position des Schwingungsknotens auf der Saite...’
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wavelength has been halved, causing a doubling of f1.6 Likewise, by touching at 1
3
L or

2
3
L, both the 1st and 2nd partials are dampened while the 3rd partial and its multiples

may sound. The sounding pitch is a perfect twelfth higher with frequency 3f1.
Only integer ratios a

b
that are in lowest terms, i.e. where a and b are coprime, will

isolate partial b and its harmonics; these are called playable nodes.7 If a
b

were not in lowest
terms, then a simpler mode of vibration at that node would be possible, producing partial

b
gcd(a,b)

with frequency b
gcd(a,b)

f1. For example, the 4th partial will only sound at 1
4
L and

3
4
L but not at 2

4
L ≡ 1

2
L ⇒ 2nd partial.

If the string is divided into b parts and b is a prime, then lightly touching each of the
b − 1 nodes (i.e. excluding endpoints) will sound partial b. For any other (nonprime)
values of b, all nodes that coincide with simpler modes of vibration must be subtracted.
The exact number of playable nodes that produce partial b is calculated by Euler’s totient
function (b), which counts the number of positive integers a less than b that are relatively
prime with b (or, equivalently, the number of positive integers a less than b such that a

b
is

in lowest terms).
As successively higher partials are activated, playable nodes fall increasingly close

together when compared to the width of a finger producing harmonics and to the thickness
of the string in question. Gradually, it becomes more and more difficult to play clear
partials, especially on shorter, thicker strings. Instead, aggregates – clusters of neighbouring
partials called multiphonics – begin to emerge. What form do these take?

In ‘Mehrklänge auf dem Klavier. Vom Phänomen zur Theorie und Praxis mikro-
tonalen Komponierens’,8 Walter sketches a possible mathematical model of partials and
multiphonics on strings.9 He bases his theory on empirical observations from which he
has inferred a procedure that invokes the Fibonacci sequence and a further process of
transformative branching that he calls mutation.

Walter correctly recognises a pattern that emerges when ordering playable nodes.
Beginning with the boundaries of a string at 0

1
and 1

1
, progressive divisions may be listed

systematically by calculating new divisions, called mediants, which would lie between
each pair of already existing fractions. The mediant is equal to the sum of the two
numerators divided by the sum of the two denominators, sometimes called the ‘freshman’s
sum’ of the two fractions. Because new terms of the Fibonacci sequence are also generated
by summing the previous two terms, Walter associates this ‘addition’ of fractions with
an expansion of Fibonacci terms in the numerators and denominators. This method
produces sequences of fractions in which each new term lies between the preceding two, a
back-and-forth ‘zig-zag’ of nested intervals narrowing around a particular location where
a multiphonic may possibly be produced.

6Mersenne’s law may be reformulated to relate frequency to the speed of propagation of the wave
along the string and wavelength: f = v

λ . Since v is constant for a given string (depending on its tension
and density), frequency is affected only by wavelength.

7Here the term playable is used to mean potentially playable on an ideal string. Clearly, higher partials
become increasingly difficult to play on a real string; in practice, the limit of playability depends on
physical characteristics of the string, e.g. its length and material properties.

8‘Multiphonics on the Piano. From Phenomenon to Theory and Practice of Microtonal Composing’
9Walter, ‘Mehrklänge auf dem Klavier’, pp. 13–40.
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For example, the sequence
{

0
1
, 1
1
, 1
2
, 2
3
, 3
5
, 5
8

}
follows the ‘Fibonacci rule’ to calculate

numerators and denominators and leads to a particular multiphonic combination. However,
to complete the set of all possible multiphonic combinations of playable nodes up to and
including 8 requires three additional sequences: those leading to 1

8
, 3

8
, and 7

8
respectively.

Generating each of these sequences follows a different mutation in Walter’s framework,
where mediants are generated from two previous, but non-successive terms in the Fibonacci
sequence. {

0

1
,
1

1
,
1

2
,
1

3
,
1

4
,
1

5
,
1

6
,
1

7
,
1

8

}
{
0

1
,
1

1
,
1

2
,
1

3
,
2

5
,
3

8

}
{
0

1
,
1

1
,
1

2
,
2

3
,
3

4
,
4

5
,
5

6
,
6

7
,
7

8

}
The first of these sequences mutates after 1

2
, at which point each new term is generated

by calculating the freshman’s sum of the previous term with the first term in the sequence,
0
1
. The second sequence initially follows this same mutation until 1

3
, at which point the

usual ‘summing’ of the preceding two terms is resumed. The third sequence mutates after
1
2
, at which point new terms are generated by finding the freshman’s sum of the preceding

term with 1
1
.

Reformulating Walter’s observations through properties of Farey sequences, which
systematically organise the fractions and their mediants in increasing order, makes it
possible to more easily develop the theory of playable nodes in a rigorous and transparent
way. This article discusses a theoretical mapping of string divisions based on these
structures and derives various musical applications.

2 Properties of Farey sequences

A Farey sequence Fk with of degree k is the set of reduced fractions a
b

between 0 and 1
whose denominators b do not exceed k, listed in strictly increasing order. The first four
Farey sequences may be expressed in the following form.

F1 =

{
0

1
,
1

1

}

F2 =

{
0

1
,
1

2
,
1

1

}
F3 =

{
0

1
,
1

3
,
1

2
,
2

3
,
1

1

}
F4 =

{
0

1
,
1

4
,
1

3
,
1

2
,
2

3
,
3

4
,
1

1

}



Nicholson/Sabat : Farey Sequences Map Playable Nodes on a String 5

Farey sequences have some unique properties:

a) any pair of consecutive fractions
(

a
b
, p
q

)
in a Farey sequence is called a ‘Farey pair’; all

Farey pairs have the property that pb− aq = 1, implying that the denominators b and
q as well as the numerators a and p are relatively prime, i.e. share no common factors;

b) any Farey pair
(

a
b
, p
q

)
first appears in Fmax(b,q); these two fractions remain consecutive

in all subsequent Fks until separated by their mediant m
n
= a+p

b+q
in the Farey sequence

Fb+q;

c) once a Farey pair is separated by its mediant, the mediant forms a new Farey pair
with each of the ‘parent’ fractions;

d) the mediant of a Farey pair is in lowest terms;

e) the mediant of a Farey pair
(

a
b
, p
q

)
is the fraction with the smallest denominator lying

between a
b

and p
q
;

f) Farey sequences divide the interval between 0 and 1 symmetrically, i.e. every fraction
a
b

has a complement 1− a
b

appearing in the same sequence.

Proofs for these properties are presented in Appendix A.

3 Melodies – intervals – chords

3.1 The Farey sequence Fk maps the playable nodes for all partials b ≤ k of
a vibrating string

Since a Farey sequence Fk lists all reduced fractions a
b

between 0 and 1 with denominators
k or smaller in ascending numerical order, Fk also lists all playable nodes along a string
that produce partials up to and including k. The playable nodes for a given partial k are
first enumerated in the Farey sequence Fk. Properties of Farey sequences may therefore
be applied to playable nodes:

• any two neighbouring10 playable nodes in Fk produce partials that are coprime;
conversely, given two coprime partials, it is possible to determine where along the
string they have neighbouring playable nodes (see Subsection 3.2 below);

• between any two neighbouring playable nodes with coprime partials b and q, the
lowest partial with a playable node between them is b+ q;

• every pair of neighbouring playable nodes appears symmetrically from either end of
the string.

10I.e. neighbouring in some Farey sequence Fk; as k increases, the physical distance between neigh-
bouring playable nodes reduces.
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Playable nodes may be interpreted musically in a number of ways. For example,
while lightly gliding along a vibrating string, it is possible to produce melodies traversing
neighbouring partials.

Consider the highest string of a contrabass (G2) with vibrating length 1050 mm from
nut to bridge. A player may slide from the 2nd partial produced at 1

2
L in either direction,

reaching the 3rd partial at 1
3
L or 2

3
L respectively.11 The lowest partial occurring between

the 2nd and 3rd is their sum, partial 5, though many other higher partials may also
be sounded along the way. Choosing some arbitrary limit, e.g. 19, the Farey sequence
F19 gives an ordered list of all playable nodes up to the 19th partial. The denominators
between 1

3
and 1

2
or 1

2
and 2

3
describe a melody of partials that may be sounded when

sliding between the 2nd and 3rd partials. By symmetry, the melody from 1
2

to 2
3

is the
retrograde of the melody from 1

3
to 1

2
; each melodic interval is expressed by the ratio

between successive denominators.{
1

3
,
6

17
,
5

14
,
4

11
,
7

19
,
3

8
,
5

13
,
7

18
,
2

5
,
7

17
,
5

12
,
8

19
,
3

7
,
7

16
,
4

9
,
5

11
,
6

13
,
7

15
,
8

17
,
9

19
,
1

2

}
{
1

2
,
10

19
,
9

17
,
8

15
,
7

13
,
6

11
,
5

9
,
9

16
,
4

7
,
11

19
,
7

12
,
10

17
,
3

5
,
11

18
,
8

13
,
5

8
,
12

19
,
7

11
,
9

14
,
11

17
,
2

3

}
Multiplying each of these fractions by the vibrating length (L = 1050 mm) gives the

positions of these playable nodes on a contrabass (see Appendix B for a notated example
with string lengths). Since each Farey pair

(
a
b
, p
q

)
satisfies the property pb − aq = 1,

the distance between them is p
q
− a

b
= pb−aq

qb
= 1

qb
. Thus, the physical distance on a

string between playable nodes with denominators q and b is 1
qb
L. In other words, the

distance between two neighbouring (relatively prime) partials is the string length divided
by their product. In the example above, partials 3 and 17, producing the melody 3:17,
are separated by 1050 mm

3×17
= 1050 mm

51
= 21 mm (see Appendix B).

3.2 The extended Euclidean algorithm locates neighbouring nodal positions
of any two coprime partials

The definition of a Farey pair pb− aq = 1 has the shape of Bézout’s identity for coprime
integers b and q, which expresses the greatest common divisor of b and q as a linear
combination of b and q multiplied by integer coefficients x1 and x2.

x1b+ x2q = gcd(b, q) = 1

The extended Euclidean algorithm may be used to calculate the coefficients of Bézout’s
identity. The definition of a Farey pair ‘converts’ the coefficients into the numerators of
a Farey pair with denominators b and q, first appearing in the Farey sequence Fmax(b,q).

11Since Farey sequences are symmetric, it may be assumed, for simplicity, that 1
3L and 2

3L refer to
fractions of the string measured from the bridge. Thus, when a node is stopped, the fraction will refer to
the sounding length.
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This indicates where along a string coprime partials b and q have neighbouring playable
nodes.12

As an illustration, consider partials 5 and 13. The extended Euclidean algorithm is
employed to calculate Bézout’s identity.

STEP A. Express the larger number (13) as a multiple of the smaller number (5) plus a
remainder RA.

13 = (2)5 + 3

STEP B. Repeat the process by expressing the smaller number (5) as a multiple of RA

plus a new remainder RB.
5 = (1)3 + 2

STEP C. Repeat the process by expressing RA as a multiple of RB plus a new remainder
RC .

3 = (1)2 + 1

Once the remainder is equal to 1, which eventually happens whenever the two initial
values are coprime, the algorithm stops.

Each step above may be rearranged to express the remainder as a sum of the other
terms. The coefficient ‘1’ is added where needed such that each term has a coefficient.

STEP A. (1)13 + (−2)5 = 3

STEP B. (1)5 + (−1)3 = 2

STEP C. (1)3 + (−1)2 = 1

This rearranged form allows for the construction of Bézout’s identity. Working backward,
earlier lines of the algorithm may be successively substituted to express the final remainder
(RC = 1) in terms of a difference of the original integers (5 and 13) multiplied by
coefficients.

In STEP C, 2 may be replaced by the expression in STEP B.

(1)3 + (−1)[ 5 + (−1)3 ] = 1

⇒ (2)3 + (−1)5 = 1

Similarly, 3 may be replaced by the expression in STEP A, reducing STEP C to a linear
combination of 5 and 13.

(2)[ (1)13 + (−2)5 ] + (−1)5 = 1

⇒ (2)13 + (−5)5 = 1

⇒ (2)13− (5)5 = 1

The definition of a Farey pair is pb− aq = 1. In this example, denominators b and q

are assigned to partials 13 and 5 respectively and numerators p and a are assigned to the
12That is, there are no playable nodes isolating partials less than min(b,q) lying between them.
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coefficients 2 and 5. For a string with length L, partials 5 and 13 will have neighbouring
nodes at 5

13
L and 2

5
L, forming the Farey pair

(
5
13
, 2
5

)
in all Farey sequences Fk where

13 ≤ k < (5 + 13).13 For a guitar with vibrating length ca. 635 mm, the distance between
these neighbouring playable nodes is approximately 10 mm, while the distance on an
average contrabass with vibrating length ca. 1050 mm is ca. 16 mm.

3.3 Branches of mediants in Farey sequences describe the components of
multiphonics

A multiphonic is an activation of several neighbouring playable nodes. It is facilitated by
making a broader point of contact with the string in the region around these nodes and by
plucking or bowing the string at a point maximising energy of the desired partials.14 The
balance of components in the sound complex – partials, noise – is affected by both where
and how the string is activated (finger position, plucking or bowing position, pressure,
velocity). Production of multiphonics is also influenced by physical resistances within
the string caused by its material qualities, e.g. stiffness, thickness, etc. These may also
cause a certain degree of distortion in the harmonic spectrum of the string, slightly raising
(‘stretching’) the actual frequencies of (some) higher partials.

Despite these variations, the Farey sequence ordering holds and, therefore, may be
used to predict the structure of possible multiphonics. In the simplest case, these take
the form a : (a+ b) : b where a and b are coprime partials. Erring on either side of the
mediant (a+ b) will favour either (2a+ b) or (a+2b) respectively, suggesting two possible
four-pitch aggregates for any coprime a and b.

a : (2a+ b) : (a+ b) : b

a : (a+ b) : (a+ 2b) : b

It would be useful in further studies to determine how various real-world parameters
affect these predictions. Which positions on what kinds of strings favour the production
of multiphonics? What is the relationship between overall string length, the size of the
point of contact (fingertip or other object), and highest partials isolated? How do the
frequency components of multiphonics produced at similar positions on a variety of strings
and instruments vary?

3.4 Farey sequences define an harmonic space of stopped pitches

By Mersenne’s law, a string of length L vibrates with wavelength 2L and frequency
f1 = v

2L
. If a playable node at a

b
is stopped, the length of string vibrating is a

b
L with

wavelength a
b
× 2L and with frequency v ÷ (a

b
× 2L) = b

a
× v

2L
. Thus, stopping the string

at a playable node will sound a pitch above the open string with frequency ratio equal to
13Additionally, because Farey sequences are symmetric, there is a complementary Farey pair that also

satisfies this condition at
(
1− 2

5 , 1−
5
13

)
⇒

(
3
5 ,

8
13

)
. Note that (ab ,

p
q ) and its complement (1− p

q , 1−
a
b )

are clearly equivalent by symmetry, depending merely on the end of the string from which one measures.
14The ideal point of contact imparting energy to a given partial b is around the antinode, i.e. at a

distance between 1
3 (

1
b ) and 2

3 (
1
b ) from the bridge.
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the inverse of the Farey fraction, namely b
a
. The frequency of this pitch will be b

a
f1. For

example, stopping at 5
12
L (measured from the bridge) will produce a pitch with frequency

twelve-fifths times that of the open string. If the contrabass’ G string is tuned to 98 Hz
(when A4 is tuned to 441 Hz), this pitch will be tuned to 12

5
× 98 = 235.2 Hz.

Moving from one stopped playable node to the next produces a microtonal scale in
which every musical interval is epimoric.15 Since for Farey neighbours pb− aq = 1,

p

q
÷ a

b
=

pb

aq
=

aq + 1

aq
.

Notice that in Farey sequence Fk, the largest denominator is k and the largest numerator
is k − 1. But, if one fraction has denominator k, then its Farey neighbour cannot have
numerator k − 1 since its denominator would then have to be k as well and k is not
coprime with itself. The largest possible a is therefore k − 2 with aq = k(k − 2). The
smallest melodic step between stopped playable nodes in Fk lies between k−2

k−1
and k−1

k
,

namely k(k−2)+1
k(k−2)

.
In the early 2000s, inspired by the experience of playing James Tenney’s Koan, Marc

Sabat undertook an empirical investigation of microtonal intervals on string instruments,
comparing the sound of all lowest terms ratios of numbers up to and including 28.16

The intention was to establish a set of just intonation intervals tuneable directly by ear.
Such intervals allow musicians playing non-fixed-pitch instruments to reliably establish
microtonal pitches and provide a possible psychoacoustic basis for just intonation (JI)
composition. Tuneable intervals are constrained by various factors affecting the perception
of harmonic sound: timbre (harmonic, spectrally rich sonorities are easier to tune); register
(the periodicity pitch or common fundamental should be generally above ca. 20 Hz and the
common partial below ca. 4000 Hz); and size (interval width should be larger than a tone
due to critical band effects and generally smaller than ca. 3 octaves due to segregation of
the frequencies). Tuneability of intervals correlates, in part, with the timbral sound of
‘spectral fusion’.

Farey sequences offer a systematic method of ordering candidate tuneable intervals at
stopped playable nodes b

a
and, given any two neighbouring ratios, finding the ‘next-simplest’

JI ratio that lies between them: their mediant.
For example, consider the equal-tempered major third T with interval size equal to 400

cents.17 T is nested between 2
1

(octave, 1200 cents) and 1
1

(open string or unison, 0 cents).
By comparing T with the mediant of these two fractions, it is clear that T lies between 3

2

15The interval between two frequency ratios is determined by dividing them. An epimoric or superpar-
ticular ratio takes the form n+1

n . In musical terms, this is the interval between two successive partials in
an harmonic series.

16Marc Sabat, 23-Limit Tuneable Intervals above and below A (Berlin: Plainsound Music Edition,
2005).

17Mathematician Alexander J. Ellis (1814–1890) proposed the division of each equal tempered semitone
into very small, equal units of measure. By dividing each semitone into 100 units called ‘cents’, the octave
is pixelated into an equal division scale of 1200 parts, which may be used as a kind of ruler to measure
and compare the absolute sizes of intervals. For a stopped pitch on a string at division b

a , its size in cents
is defined as 1200× log2(

b
a ).
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(perfect fifth, 702 cents) and 1
1
. The sequence of nested bounds proceeds as follows.

(4
3
,
1

1
) → (4

3
,
5

4
) → (9

7
,
5

4
) → (14

11
,
5

4
)

Since the interval 14
11

is no longer directly tuneable18 and all subsequent mediants will
be non-tuneable ratios of even larger numbers, the nearest tuneable intervals to T are
5
4

(386 cents) on the smaller side and 9
7

(435 cents) on the larger side. The size of this
tolerance region between neighbouring tuneable intervals is the microtonal interval 36

35

(49 cents, approximately a quartertone). To find the ‘simplest’ frequency ratios nesting
400 cents within a practically imperceptible tolerance of 2 cents, the process may be
continued.

(19
15

,
5

4
) → (24

19
,
5

4
) → (29

23
,
5

4
) → (29

23
,
34

27
)

Comparing the size of these last two ratios, 29
23

has 401 cents and 34
27

has 399 cents and
the size of the region they enclose is 783

782
(2 cents), well below experimental thresholds

for just noticeable difference, measured at approximately 3 Hz for tones around 500 Hz,
equivalent to ca. 6–10 cents.19

Stopped playable nodes in the range between 1
1

and 1
2

may also be considered as a gamut
of octave-equivalent, ‘Monophonic’ pitch-classes in the sense introduced by Harry Partch.20

Since Farey sequences introduce numerically larger frequency ratios in a systematic way,
it could be compositionally fruitful to consider successive Fks filtered by prime factors (or
up to a certain prime limit, like Partch’s 11-limit scale) to generate subsets suggesting
musically interesting proximities and enharmonic moves within harmonic space.

18Sabat, 23-Limit Tuneable Intervals.
19B. Kollmeier, T. Brand, and B. Meyer, ‘Perception of Speech and Sound’, in Benesty, Sondhi, and

Huang (eds.), Springer handbook of speech processing, (New York: Springer, 2008), p. 65.
20Harry Partch, Genesis of a Music, 2nd Edition (Boston: Da Capo Press, 1979).
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Appendices
A Mathematical proofs: Farey Sequences

Though properties of Farey sequences have already been derived in a number of elegant and
rigorous ways, the authors devised the following proofs to clarify specific results referred
to in this text. We wish to acknowledge the excellent and comprehensive mathematical
contributions to this domain in Hardy and Wright,21 Graham, Knuth, and Pataschnik,22

et al.

Given a positive integer k, consider the collection Fk of all rational numbers a
b

where
0 ≤ a

b
≤ 1, b ≤ k, and a

b
is in lowest terms. Only a finite number of fractions satisfies

these conditions for each k and, being in lowest terms, they are unique. Therefore, Fk

may be written in strictly increasing order and is called the Farey sequence of order k.

F1 =

{
0

1
,
1

1

}

F2 =

{
0

1
,
1

2
,
1

1

}
F3 =

{
0

1
,
1

3
,
1

2
,
2

3
,
1

1

}
F4 =

{
0

1
,
1

4
,
1

3
,
1

2
,
2

3
,
3

4
,
1

1

}

For k ≤ 4 in the preceding examples, it appears that consecutive fractions in Farey
sequences, i.e. any neighbours a

b
and p

q
where a

b
< p

q
, satisfy the property pb− aq = 1.

Definition 1. Let any two fractions a
b
< p

q
that satisfy the property pb− aq = 1 be called

a Farey pair.
Definition 2. Define the mediant m

n
of a

b
and p

q
as

m

n
=

a+ p

b+ q
.

Theorem. Any two neighbouring fractions in any Farey sequence Fk form a Farey pair.
The proof will proceed by induction. Note that 0

1
and 1

1
satisfy the definition of a Farey

pair in F1, so the Theorem holds for F1.
Lemma 1. Let a

b
and p

q
be a Farey pair. It follows that all of the following pairs of

integers are coprime: (a, b), (p, q), (a, p), and (b, q). In particular, a
b

and p
q

are in lowest
terms.

21G.H. Hardy and E.M. Wright, ‘The Farey Series and a Theory of Minkowski’, An Introduction to the
Theory of Numbers, 4th Edition (London: Oxford University Press, 1975), pp. 23–37.

22R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for Computer
Science, 2nd Edition (Boston: Addison-Wesley, 1989), pp. 115–139.
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Proof. Let c be a positive integer that divides both a and b; then p
(
b
c

)
−
(
a
c

)
q is an

integer. Since pb− aq = 1, then pb−aq
c

= 1
c
⇒ c = 1. The same argument holds for each

of the other pairs.
Lemma 2. Let a

b
and p

q
be a Farey pair, and let m

n
be their mediant.

The following properties hold true.

(
a

b
,
m

n ) and (
m

n
,
p

q ) are Farey pairs (1)

a

b
<

m

n
<

p

q
(2)

m

n
is in lowest terms (3)

if some r

s
in lowest terms satisfies a

b
<

r

s
<

p

q
, then s ≥ n (4)

An obvious consequence of Properties (1) and (4) is that there cannot be two lowest terms
fractions with the same denominator nested inside a Farey pair.

Proof (1). Property (1) follows from the Farey pair definition because

mb− an = (a+ p)b− a(b+ q) = pb− aq = 1

and
pn−mq = p(b+ q)− (a+ p)q = pb− aq = 1.

Proof (2). Property (2) follows from property (1) because

m

n
− a

b
=

mb− an

nb
=

1

nb
> 0

and
p

q
− m

n
=

pn−mq

qn
=

1

qn
> 0.

Proof (3). Property (3) follows from Lemma 1 and property (1) because all fractions
that form Farey pairs are in lowest terms.

Proof (4). Property (4) follows because

p

q
− a

b
=

pb− aq

qb
=

1

qb

⇒ 1

qb
= (

p

q
− r

s) + (
r

s
− a

b ) =
ps− rq

qs
+

rb− as

sb
.
Since both terms in the sum are positive by the definition of r

s
in Property (4), as are qs

and sb, ps− rq and rb− as must also be positive integers, and thus

1

qb
≥ 1

qs
+

1

sb
= (b+ q

s
)( 1qb)

⇒ s ≥ b+ q = n.
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Proof of the Theorem. Proceeding by induction, we assume for some k ≥ 1 that all
neighbouring fractions in Fk are Farey pairs. Let n = k + 1 and let

0 <
m

n
< 1

be some fraction in lowest terms. Since 0 < m
n

and 0 is in Fk, let a
b

be the largest element
of Fk less than m

n
. Since m

n
< 1 and 1 is in Fk, then there is some p

q
in Fk greater than a

b

that forms a Farey pair with it.

a

b
<

m

n
<

p

q

It was shown in Lemma 2, property (4), that n ≥ b+ q. By definition, m
n

is not in Fk

because its denominator is greater than k. However, if b+ q < n, then a
b

and p
q

cannot
be neighbours in Fk because they would be separated by their mediant a+p

b+q
. Therefore,

m
n
= a+p

b+q
. By Lemma 2, property (1), m

n
forms Farey pairs with its neighbours a

b
and p

q
.

The only remaining case in which the induction would not yet be proven is if there were
two fractions with denominator n nested between a

b
and p

q
. However, as noted above, this

is not possible.
Corollary 1. Any irreducible fractions a

b
and p

q
, where 0 ≤ a

b
< p

q
≤ 1, are neighbours in

Fmax(b,q).
Proof. If a

b
and p

q
are not neighbours in Fmax(b,q), then there is some irreducible fraction

m
n

that lies between them where a
b
< m

n
< p

q
and b + q ≤ n ≤ max(b, q). Since b, q > 0,

there is no such n.
Corollary 2. The Farey pair

(
a
b
, p
q

)
first occurring in Fmax(b,q) will remain a Farey pair

until it is separated by its mediant a+p
b+q

in Fb+q.
Proof. This follows from Lemma 2, properties (2) and (4).

B Playable nodes on a contrabass

Overleaf: 41 playable nodes between 1
3

and 2
3

(symmetric around 1
2
) in F19 notated in the

Helmholtz-Ellis JI Pitch Notation. Distances are measured from the bridge along the G
string of a contrabass with vibrating length (L) ca. 1050 mm. Melodic ratios in italics
denote the microtonal intervals between the nodes if played as stopped pitches.
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sounding

contrabass
(G string)



  



 

       




n

:f < 4
/e

n
0 n

n :f <f 4 /> n 0o >

3°

17° 14°
11°

19°

8°
13° 18°

1
3

350mm

-2

18 : 17
+3

371mm

6
17

85 : 84

-21

375mm

5
14

56 : 55
+47

382mm

4
11

77 : 76

387mm

7
19

+25

57 : 56

394mm

3
8

-6

40 : 39

404mm

5
13-50

91 : 90

408mm

7
18

+31

36 :

snd

cb
(I)











  

        




m

:f
n

/e

<
n

n 4 0

m :>f f /e <e > n 4f 0

5°

17° 12°
19°

7°
16°

9° 11° 13°

-18
420mm

2
5

35 : 34: 35
+32

432mm

7
17

+12

438mm

5
12

85 : 84

-6

442mm

8
19

96 : 95

-37

450mm

3
7

57 : 56 49 : 48
+27

459mm

7
16

64 : 63

467mm

4
9

45 : 44
A-39

477mm

5
11

66 : 65

Ab-35
485mm

6
13

91 :

snd

cb
(I)

  



   

       




u :f /e

n

/e :f u 0

>u :f /e n /f :f u 0>v

15° 17° 19°

2°

19° 17° 15° 13°

+16

490mm

7
15

120 : 119: 90
+1

494mm

8
17

153 : 152

-10

497mm

9
19

19 : 18

-4
525mm

1
2

20 : 19
+7

553mm

10
19

171 : 170

-3

556mm

9
17

136 : 135

-16
560mm

8
15

105 : 104

565mm

7
13

-32

78 :

snd

cb
(I)

 











       




4 n
n

<

/e
n

:f

m

4 o n < /5 > :g m

11° 9°
16°

7°

19°
12° 17°

5°

+45

573mm

6
11

: 77 55 : 54
+14

583mm

5
9

81 : 80

-8
591mm

9
16

64 : 63

600mm

4
7

-35

77 : 76
E+42

608mm

11
19

133 : 132

+29

613mm

7
12

120 : 119
+15

618mm

10
17

51 : 50

-20
630mm

3
5

55 :

snd

cb
(I)

 



  



       




n 0
n

/e
4 < :f

n

5 0 f /e 4> <e :5f n

18° 13°
8°

19°
11°

14° 17°

3°

Eb+49

642mm

11
18

: 54 144 : 143
Eb+37

646mm

8
13

65 : 64

+10

656mm

5
8

96 : 95

-8
663mm

12
19

133 : 132
D#-21

668mm

7
11

99 : 98

675mm

9
14

-39

154 : 153

D+50
679mm

11
17

34 : 33

700mm

2
3

-2


