
On Ben Johnston’s Notation and the Performance Practice 
of Extended Just Intonation

by Marc Sabat

1. Introduction: Two Different E’s

Like the metric system, the modern tempered tuning which divides an octave
into 12 equal but irrational proportions was a product of a time obsessed with
industrial  standardization  and  mass  production.  In  Schönberg’s  words:  a
reduction of natural relations to manageable ones. Its ubiquity in Western musical
thinking, epitomized by the pianos which were once present in every home, and
transferred  by  default  to  fixed-pitch  percussion,  modern  organs  and
synthesizers, belies its own history as well as everyday musical experience. 

As a young musician, I studied composition, piano and violin. Early on, I began
to learn about musical intervals, the sound of two tones in relation to each other.
Without any technical intervention other than a pitch-pipe, I learned to tune my
open strings to the notes G - D - A - E by playing two notes at once, listening
carefully to eliminate beating between overtone-unisons and seeking a stable,
resonant sound-pattern called a “perfect fifth”. 

At the time, I did not know or need to know that this consonance was the result
of a simple mathematical relationship, that the lower string was vibrating twice
for every three vibrations of the upper one. However, when I began to learn
about placing my fingers on the strings to tune other pitches, the difficulties
began. To find the lower E which lies one whole step above the D string, I
needed to place my first finger down. Since the open E is two strings away, I
could not rely on hearing an octave to check if my pitch was true. Instead, I
had two other possibilities: to tune the major sixth from G to E or the perfect
fourth from E to A. 

Anyone who tries this and listens for the most consonant tuning of overtones
will easily find two different E’s. But the piano only has one, traditional notation
only has one, and when musicians speak about tuning they usually say that
something is simply “in tune” or “out of tune”. 

So which E is “right”? In spite of the clear evidence of my own senses, the force
of mass belief in a cultural system encouraged me to somehow try and decide
in favor of one E, and for many years I kept trying to do so, thinking that there
was something wrong with my oversensitivity. It wasn’t until my twenties, when
I  accidentally  came across  Harry  Partch’s  book  “Genesis  of  a  Music”  and
Hermann von Helmholtz’s “On the Sensations of Tone as a Physiological Basis
for the Theory of Music”, that I began to realize that in fact my perception was
accurate, and the piano and the conventional music notation insufficient.



2. Musical Intervals and Frequency Ratios

The  reason  for  such  microtonal  variations  is  based  on  very  simple
mathematics. Pitches are periodic vibrations, and natural intervals are patterns
produced by a ratio of frequencies. The simpler the pattern, the more consonant
the resulting combination. Thus, in tuning my open strings, I had found the
ratio 3/2. In tuning the perfect fourth A - E, I was hearing the ratio 4/3; for the
major sixth G - E, I had two choices: taking the same E against G produces the
ratio 27/16, which by virtue of its larger numbers sounds more complex and
dissonant; by lowering E slightly one finds the ratio 5/3, which sounds more
simple and consonant.  However,  the ratio from this  lower E to the open A
string then becomes 27/20, which has a complex and dissonant sound.1 

Using ratios one can measure the difference between these two E’s, simply by
dividing the two ratios:

(27/16) ÷ (5/3) = (81/80) = one Syntonic Comma

In this example, not only are two slightly different pitches being produced, but
even more importantly each E brings both a consonance and a dissonance into
play.  It  is  exactly  this  consequence,  the  necessity  of  accepting  well-tuned
dissonances, which  for  a  long  time  presented  an  obstacle  to  making  Just
Intonation  (JI  for  short)  a  conscious  part  of  musical  practice.  Instead,  in
Western music intonation is kept mysterious, something which good musicians
are expected to achieve intuitively.

3. A Brief History of Intonation in European Music

In the 9th through the 12th centuries across Europe there developed a vocal
music based on diatonic modes harmonized in fifths, fourths, and octaves. The
most natural intonation of such modes, derived from ancient Greek harmonic
theory via Boethius, was achieved by constructing a series of fifths from one
note to the next, a so-called Pythagorean tuning. As vocal polyphony developed,
the harmonies between voices began to include major and minor thirds and
sixths,  and the  classical  Pythagorean tuning was  expanded to  a  Ptolemaic2

system, including the ratios 5/4, 6/5, 5/3, 8/5. In practice, this meant that
singers  and  instrumentalists  would  make  small  comma-adjustments  to
facilitate the weaving of consonances and dissonances in the music.

1 To add musical intervals, one must multiply the respective ratios. So, for example, the two perfect fifths 
G - D and D - A added together produce a ninth: (3/2) • (3/2) = (9/4). 
To subtract musical intervals, one must divide the respective ratios. Thus the ninth less a perfect fourth 
produces the higher of two E’s: (9/4) ÷ (4/3) = (27/16). The ninth less a consonant major sixth produces
a dissonant large fourth: (9/4) ÷ (5/3) = (27/20).

2 Claudius Ptolemy was one the earliest theorists to outline the sequence of intervals which defines a 
major scale in triadic (5-Limit) JI. This set of pitches may be constructed from any tonic by combining the
subdominant, tonic, and dominant triads, each tuned in the proportion 4:5:6.
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In the 16th century, the theorist Zarlino codified this ongoing praxis, stating
that  the natural  intonation practiced by singers  and instruments of  flexible
pitch was based on consonant intervals that could be expressed as ratios of the
first six whole numbers (a set he called the senario). At the same time, Zarlino
was the first to precisely describe the practice of temperament on  fretted or
keyed  instruments  of  fixed  pitch.  His  2/7-comma  Meantone3 Temperament
proposes a geometrically constructed compromise which mistunes all of the
common consonances into gently beating approximations. This system allowed
a keyboard instrument  to  come close  to  natural  intervals  without  having  a
mechanically  unmanageable  plethora  of  keys.  Zarlino  even  described  his
meantone temperament in theological terms, arguing that such an elegantly
constructed compromise from the ideal intervals mirrored the imperfection of
human condition in contrast to the divine.

Equal Temperament was proposed around the same time as suitable for fretted
instruments, keeping in mind that experienced gamba players were always able
to make subtle adjustments by bending the strings. Perhaps most significant in
this time and the two centuries following was an acceptance of many models of
tuning simultaneously: pure intervals and tempered intervals, requiring multiple
interpretations of the musical symbols flat, natural, sharp.

In Pythagorean tuning, flats are  lower than enharmonically spelled sharps; in
Equal Temperament flats are equal to the sharps; in Meantone Temperament
flats are higher than sharps. In JI, each note has various possible tunings based
on its harmonic context. Indian music theory explicitly describes these variations
of tuning as  srutis, which are understood as microtonal variations of the 12
chromatic  pitch-classes.  Such  microtonal  shadings  and  spectral  sound-
aggregates are increasingly prevalent in contemporary written music, and this
has inspired various attempts to find appropriate notations for them.

4. Helmholtz and Ellis

In the 19th century, Helmholtz argued for JI based on correctly tuned fifths
and thirds. In his book he uses the conventional note-names to represent a
series of perfect fifths. So, for example, the common open strings are written
conventionally as  C - G - D - A - E. To make a simple consonant interval with C
and G (thereby completing a triad tuned in the proportion 4:5:6) E  must be
lowered by the ratio 81/80 (one Syntonic comma), as described above. If this
lowering is explicitly notated, it becomes possible to write up correctly tuned
just major thirds above any note in the series of fifths. By a similar logic, the just
major thirds  below any note may be written, simply by inverting the symbol
used.4 Such a system can most elegantly be understood by drawing a two-
dimensional  tone  lattice,  following  a  model  which  Leonhard  Euler  first

3 Meantone refers to the tempering of the two whole-tones 9/8 and 10/9, which together make a pure 
major third 5/4. Instead, this third is closely approximated by choosing two equal-sized mean tones.
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proposed in his writings about mathematics and music theory. On one axis
notes are related by perfect fifths and fourths, and on a second perpendicular
axis notes are related by major thirds or minor sixths.

Helmholtz’  English  translator  Alexander  Ellis  recognized  that  once  various
tunings of pitches are introduced it becomes important to have a fine ruler for
measuring these differences,  simply to be sure which is  a little  higher and
which is a little lower. As musicians, we are already used to this logic, derived
from  the  Greek  theorist  Aristoxenus:  we  speak  of  wholetones,  semitones,
quarter-tones, even sixth-tones. Ellis proposed a formula which would create a
metric  division of  each tempered semitone into  100 units,  called  cents. In
effect, this is a division of the octave (2/1) into 1200 equal-sounding parts. 

4. Calculating Cents

To convert any ratio to a value in cents, the following formula may be applied:

cents = 1200 • log (ratio) / log (2)

For example, to calculate the size of the just perfect fifth:

1.) Write the ratio as a fraction 3/2, with the larger number divided by the
smaller (this simply considers the ratio as an interval measured upward).

2.) Calculate the logarithm of 3/2 divided by the logarithm of 2, and multiply
by 1200.

3.) The rounded result should be about 702 cents, which is equivalent to 7.02
tempered semitones.

This means that a 3/2 frequency ratio is larger than 7 tempered semitones by
a tiny amount, 2/100 of a tempered semitone (a  just  noticeable difference).
Using this formula, it is possible to find out that one Syntonic Comma (81/80)
is equal to around 21.5 cents (somewhat less than an eighth-tone).

4 The Extended Helmholtz-Ellis JI Pitch Notation, conceived by Marc Sabat and Wolfgang von Schweinitz, 
is a system of accidental signs based on Helmholtz’ method. It allows all frequency ratios to be written 
within the common five-line staff notation. To indicate alteration by a Syntonic Comma, an arrow pointing
upward or downward is attached to the conventional flat, natural, or sharp sign. For more information, 
please visit www.plainsound.org
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5. Learning the 5-Limit Intervals

In  the  early  20th  century,  American  composer  and  theorist  Harry  Partch
became fascinated with the sound of just intervals tuned by ear, and not only
the classical consonances constructed from fifths and thirds. In his music he
began to also incorporate intervals derived from the 7th and 11th partials of
the  harmonic  series.  To  organize  this  expanded  pitch  system  Partch
introduced  the  concept  of  various  prime  limits:  he  referred  to  Pythagorean
tuning as 3-Limit,  Ptolemaic tuning as 5-Limit,  and his  own system as 11-
Limit. This idea is based on the fact that all ratios can be broken down into
products of prime numbers. For each prime number there are characteristic
intervals – fundamental building blocks – which must be learned by ear to tune
within that prime limit.

To accurately realize Pythagorean tuning, a musician needs to learn intervals
based on the primes 2 and 3: the perfect fifth 3/2, the perfect fourth 4/3, the
major ninth 9/4 and the wholetone 9/8. By combining these intervals, all other
3-Limit pitches may be found.

A  5-Limit  system  is  based  on  the  primes  2,  3  and  5.  In  addition  to  the
Pythagorean intervals, there are now new consonances (intervals tuneable by
ear)  based on the prime number 5.  For  example,  the major third 5/4,  the
minor third 6/5, the major sixth 5/3, the minor sixth 8/5, the minor seventh
9/5 and the major seventh 15/8. As well, 5-Limit tuning introduces a slightly
smaller wholetone with the ratio 10/9. To become familiar with these intervals,
it is useful to calculate their sizes in cents, to produce each of them with the
help of an electronic tuner, and to tune them to an overtone-rich sustained
drone (i.e. an Indian sruti box, a reed organ or an accordion).

interval name limit ratio cents tempered deviation

minor wholetone 5 10/9 182 200 –18

major wholetone 3 9/8 204 200 +4

minor third 5 6/5 316 300 +16

major third 5 5/4 386 400 –14

perfect fourth 3 4/3 498 500 –2

perfect fifth 3 3/2 702 700 +2

minor sixth 5 8/5 814 800 +14

major sixth 5 5/3 884 900 –16i

minor seventh 5 9/5 1018 1000 +18

major seventh 5 15/8 1088 1100 –12

octave 2 2/1 1200 1200 0

major ninth 3 9/4 1404 1400 +4
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With the exception of the two whole-tones, each of these intervals can be tuned
very accurately simply by listening to its sound, by trying to minimize beating
between common partials, and focussing the spectral clarity of combination
tones.5 Each has a distinctive sound which is readily learned and may then be
used in combinations to construct more complex 5-Limit sounds.

6. Ben Johnston’s Notation

Following  in  Partch’s  tradition,  the  American  composer  Ben  Johnston  has
developed  a  set  of  microtonal  accidentals  which  he  uses  to  represent  JI
intervals. In his system, the seven white notes C D E F G A B are tuned as
consonant major triads above F, C and G (subdominant, tonic, dominant in the
key of C):

D
G B
C E
F A

In  the  diagram,  left-to-right  represents  a  4:5  major  third,  and  upwards
represents a 2:3 perfect fifth. This means that the interval D - A is not a perfect
fifth, rather it is one Syntonic Comma smaller, that is:

D - A = (3/2) ÷ (81/80) = (40/27)

To notate the Syntonic Comma, Johnston employs the signs + and – so that
the perfect fifth above D is written as A+. Extending the matrix:

D+
G+ B+
C+ E+
F+ A+

D
G B
C E
F A

D–
G– B–
C– E–
F– A–

5 Here the difference tone method is particularly useful, and may be calculated simply by subtracting the 
numerator and denominator of the ratio and working out its pitch in a harmonic series. Thus, in the major
sixth 5/3, the difference tone is 5–3=2. If 5 is a B and 3 is a D, then 2 is a G (a fifth below D).
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Each block of seven pitches is a 5-Limit major scale, and each block is one
Syntonic Comma higher than the previous one.

Continuing with this logic, Johnston defines flats in such a way that the three
minor triads on F, C and G are tuned in 5-Limit JI. In a major triad, the major
third  4:5  is  on  the  bottom,  and  the  minor  third  5:6  is  on  top,  creating  a
proportion 4:5:6. The minor triad inverts this relationship, placing the minor
third 5:6 = 10:12 on the bottom, and the major third 4:5 = 12:15 on top,
creating a proportion 10:12:15. Thus, the difference between E and Eb is the
difference between a just major third and a just minor third:

(5/4) ÷ (6/5) = (25/24) = 71 cents

This  interval  is  called  the  5-Limit  chromatic  semitone.  A  flat  lowers  by this
amount, a sharp raises by the same ratio. Based on this definition, it is now
possible to expand the matrix by including sharps and flats:

D+
G+ B+ D#+
C+ E+ G#+ B#+

Db F+ A+ C#+ E#+
Gb Bb D F#+ A#+
Cb Eb G B D#
Fb Ab C E G# B#

Db– F A C# E#
Gb– Bb– D– F# A#
Cb– Eb– G– B–
Fb– Ab– C– E–

F– A–

5-Limit intervals may be thought of as 2-dimensional “chess moves” within this
lattice, as indicated in the following table.
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interval name ratio
steps left (–) 
or right (+)  [5^]

steps down (–) 
or up (+)  [3^]

chromatic semitone 25/24 +2 –1

diatonic semitone 16/15 –1 –1

minor wholetone 10/9 +1 –2

major wholetone 9/8 0 +2

minor third 6/5 –1 +1

major third 5/4 +1 0

perfect fourth 4/3 0 –1

augmented fourth 45/32 +1 +2

diminished fifth 64/45 –1ii –2iii

perfect fifth 3/2 0 +1

minor sixth 8/5 –1 0

major sixth 5/3 +1 –1

minor seventh 9/5 –1 +2

major seventh 15/8 +1iv +1

octave 2/1 0 0

major ninth 9/4 0 +2

Note  the  addition  of  four  new  intervals:  the  chromatic  semitone 25/24
(difference between  a  major  and minor  third),  the  diatonic  semitone 16/15
(difference between a perfect fourth and a major third), the  augmented fourth
45/32 (a major third combined with a major whole-tone 9/8) and its inversion
the diminished fifth 64/45.
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6. Extended Just Intonation

For higher prime limits, Johnston has coined the term Extended Just Intonation.
To become familiar with these more distant, unfamiliar,  and in some cases
dissonant intervals,  the most  effective approach is to  identify  characteristic
easily tuned relationships for each prime. These can serve as building blocks to
reach the more harmonically distant pitches following a similar lattice-based
approach to the one outlined above.

For  the  7-Limit,  perhaps  the  easiest  interval  to  accurately  produce  is  the
narrow minor tenth 7/3 (1467 cents, or a deviation of –33 from the tempered
minor tenth).  The septimal minor seventh 7/4 and the septimal diminished
fifth  7/5 are also  relatively  easily  learned.  In Johnston’s  notation,  septimal
intervals above a note are indicated by adding a small 7 accidental. An inverted
7 simply means that the septimal interval was generated downward.

The 11-Limit is reached most easily by means of the interval 11/4, which is
almost  exactly  one  octave  plus  a  perfect  fourth  plus  a  quarter-tone  (1751
cents). 11/6 (the neutral seventh) is also readily learned. Johnston indicates
these  pitches  with  an  arrow upward  (interval  above)  or  downward  (interval
below).

The  13-Limit  is  perhaps  the  most  difficult  to  accurately  learn.  It  is
characterized  by  the  neutral  sixth  13/8  (an  interval  which  may  be  found
approximately 1/3 of the way between a minor sixth and a major sixth). This
relation is more easily heard in wide position (13/4). In higher registers, it may
be possible to hear the difference tone produced by a 13/8, particularly in the
progression 5/3 - 13/8 - 8/5, in which case the difference tones descend by
semitones. Several other easier 13-Limit sounds are the neutral ninth 13/6, the
small  major  seventh  13/7,  and  the  major  third-plus-quarter-tone  13/10.
Johnston writes these intervals with a small added 13 or inverted 13.6

In general, realizing pitches in extended JI requires that a performer always
think in terms of intervallic relationships to other pitches:

1.) What other pitches are sounding or have recently sounded?
2.) How are they most simply related to each other?
3.) Which  prime  building  blocks  can  be  used  to  construct  a  well-tuned

relationship?

It  is  exactly  this  kind  of  extended  harmonic  awareness  that  allows  such
complex pitch-relationships to become comprehensible in the imagination of
the performer, and thus to be transmitted with maximum clarity to the ears of
the listener.

6 To avoid confusion in the case of an inverted 13, it is useful to bear in mind its resemblance to 31!
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6. Notes about transpositions and cents calculation in Johnston’s music

In the case of transposing instruments in Johnston’s music, it is important to
determine which JI  interval  is being used for the notated transposition.  For
example, in “O Waly Waly Variations”, the two saxophones in Bb are written in
G Major, sounding F Major, a 9/8 major wholetone lower (plus the usual octave
transpositions as needed). Thus, the first two notes are written as A+ and D
but  sound  as  G  and  C.  The  two  Eb  instruments  are  written  in  D–  Major,
sounding  F  Major,  a  6/5  minor  third  higher  (plus  the  usual  octave
transpositions as needed). Thus, the first two notes are written as A and D–,
sounding  C  and  F.  The  resulting  harmonies  are  3-Limit  perfect  fifths  and
fourths.

If  performers wish to calculate  cents  deviations,  the first  step is  to  decide
which pitch will be 0 cents (reference). Then, it is necessary to calculate ratios
from this reference point (for very exact cents). 

A shorthand method is to simply calculate the cents deviations of each of the
seven  white  notes,  and  then  add  or  subtract  the  cents  deviations  of  each
additional accidental. 

For example, if sounding F is chosen as a reference, here are the ratios and
cents deviations of the seven white pitches:

note ratio to F cents deviation

F 1/1 0 0

G 9/8 204 +4

A 5/4 386 –14

B 45/32 590 –10

C 3/2 702 +2

D 27/16 906 +6

E 15/8 1088 –12

The deviations must be appropriately offset should another pitch be chosen as
0 cents. 

Thus, if A is 0 cents, as is usual on electronic tuners, then all of the deviations
in this table must be corrected by +14 cents. F becomes +14, G +18, and so
on. Thus, the open strings of the orchestral string instruments will be written
with  the  notes  C–  G–  D–  A  E,  and  tuned  to  –6,  –4,  –2,  0,  and  +2  cents
respectively, as Johnston does in his string quartets for the most part.

10



Following is a table of accidental alteration amounts:

sign / prime limit ratio cents

+ / – 81/80 22

b / # 25/24 71

7 36/35 49

11 (arrow) 33/32 53

13 65/64 27

It may also be helpful to recall which interval is most commonly altered by
each of  these  signs.  The  +  and  –  signs  provide  comma corrections,  often
occurring between D and A (to make a consonant fifth, D A+ or D– A); similarly
between Bb and F to make a consonant fifth; and between D and F or F# to
make a consonant third D F+ or D F#+. The b and # signs are conventional but
substantially smaller than their equal tempered equivalents.

The  7  sign  alters  a  9/5  interval  (the  5-Limit  minor  seventh)  downward by
approximately a quarter-tone to produce the septimal minor seventh 7/4.

The  11  sign  (arrow-up)  alters  a  perfect  fourth  upward by  approximately  a
quarter-tone to produce the 11/8 ratio (which is most easily learned in wide
position as the ratio 11/4 mentioned above).

The 13 sign alters the 5-Limit minor sixth upward by approximately a sixth-tone
to produce the neutral sixth 13/8.

As  long  as  these  relationships  are  kept  in  mind,  the  exact  harmonic
relationships  between  successive  and  simultaneous  pitches  can  readily  be
determined.

Berlin, 2009
for Ben Johnston and Sylvia Smith

errata marked with small Roman numerals i.–iv. corrected 11.11.2018,
 with special thanks to Juhani Nuorvala
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